Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Biochem Mol Toxicol ; 38(4): e23675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488158

ABSTRACT

Accumulating evidence shows that the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) can significantly affect the long-term prognosis of coronary artery bypass grafting. This study aimed to explore the factors affecting the proliferation, migration, and phenotypic transformation of VSMCs. First, we stimulated VSMCs with different platelet-derived growth factor-BB (PDGF-BB) concentrations, analyzed the expression of phenotype-associated proteins by Western blotting, and examined cell proliferation by scratch wound healing and the 5-ethynyl-2-deoxyuridine (EdU) assay. VSMC proliferation was induced most by PDGF-BB treatment at 20 ng/mL. miR-200a-3p decreased significantly in A7r5 cells stimulated with PDGF-BB. The overexpression of miR-200a-3p reversed the downregulation of α-SMA (p < 0.001) and the upregulation of vimentin (p < 0.001) caused by PDGF-BB. CCK8 and EdU analyses showed that miR-200a-3p overexpression could inhibit PDGF-BB-induced cell proliferation (p < 0.001). However, flow cytometric analysis showed that it did not significantly increase cell apoptosis. Collectively, the overexpression of miR-200a-3p inhibited the proliferation and migration of VSMCs induced by PDGF-BB, partly by affecting phenotypic transformation-related proteins, providing a new strategy for relieving the restenosis of vein grafts.


Subject(s)
MicroRNAs , Muscle, Smooth, Vascular , Becaplermin/pharmacology , Cell Proliferation , Myocytes, Smooth Muscle , Phenotype , MicroRNAs/genetics , Cell Movement , Cells, Cultured
2.
Dalton Trans ; 52(36): 12686-12694, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37609766

ABSTRACT

Two sets of 1D/2D lanthanide coordination polymers with formulas of Ln(oqa)3·2H2O [Hoqa = 2-(4-oxoquinolin-1(4H)-yl) acetic acid, Ln = Dy (1), Yb (2)] and Ln(oaa)2(HCOO)(H2O) [Hoaa = 2-(9-oxoacridin-10(9H)-yl) acetic acid, Ln = Dy (3), Yb (4)] have been synthesized and their physical properties were investigated. All four complexes are constructed from seven-coordinate lanthanide ions and corresponding organic linkers. The lanthanide ions in 1 and 2 adopt a pentagonal bipyramid coordination geometry, whereas the coordination geometry of lanthanide ions in 3 and 4 can be described as a capped octahedron. Slow magnetic relaxation behaviors were observed in these four products at a zero/non-zero static magnetic field. Complexes 1, 2 and 4 exhibit the characteristic emission of Ln(III) ions, whereas complex 3 shows ligand-based emission. Bright yellow light emission was also observed when a voltage was applied, demonstrating the potential of 1 for application in light-emitting diodes (LEDs). Compounds 3 and 4 are the first examples of lanthanide complexes based on Hoaa ligands.

3.
Front Bioeng Biotechnol ; 11: 1169496, 2023.
Article in English | MEDLINE | ID: mdl-37476483

ABSTRACT

Background: There are considerable socioeconomic costs associated with bone defects, making regenerative medicine an increasingly attractive option for treating them. Chitosan is a natural biopolymer; it is used in approaches for sustained slow release and osteogenesis, and metformin has osteoinductivity. Our study aimed to synthesize chitosan and human serum albumin (HSA) with a metformin nanoformulation to evaluate the therapeutic effects of this nanoformulation on bone defects in vitro. Methods: A pluripotent differentiation assay was performed in vitro on mouse bone marrow mesenchymal stem cells (BMSCs). Cell Counting Kit-8 was used to detect whether metformin was toxic to BMSCs. The osteogenesis-related gene expression of osteocalcin (OCN) and osteoprotegerin (OPG) from BMSCs was tested by real-time polymerase chain reaction (PCR). HSA, metformin hydrochloride, and chitosan mixtures were magnetically stirred to finish the assembly of metformin/HSA/chitosan nanoparticles (MHC NPs). The MHC NPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FT-IR). To test the expression of OCN and OPG, western blot were used. MHC NPs were evaluated in vitro for their osteoinductivity using alkaline phosphatase (ALP). Results: BMSCs successfully differentiated into osteogenic and adipogenic lineages in vitro. According to real-time PCR, a 50 µM concentration of metformin promoted osteogenesis in BMSCs most effectively by upregulating the osteogenic markers OCN and OPG. The microstructure of MHC NPs was spherical with an average nanosize of 20 ± 4.7 nm and zeta potential of -8.3 mV. A blueshift and redshift were observed in MHC NPs following exposure to wavelengths of 1,600-1,900 and 2,000-3,700 nm, respectively. The encapsulation (%) of metformin was more than 90%. The simulation study showed that MHC NPs have good stability and it could release metformin slowly in vitro at room temperature. Upon treatment with the studied MHC NPs for 3 days, ALP was significantly elevated in BMSCs. In addition, the MHC NPs-treated BMSCs upregulated the expression of OPG and OCN, as shown by real-time PCR and western blot. Conclusion: MHC NPs have a stable metformin release effect and osteogenic ability. Therefore, as a derived synthetic biopolymer, it is expected to play a role in bone tissue regeneration.

4.
Sheng Li Xue Bao ; 73(3): 482-490, 2021 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-34230949

ABSTRACT

S100 calcium binding protein A9 (S100A9) is involved in a variety of biological processes such as inflammation and tumor cell migration and invasion regulation. The purpose of this study was to construct S100A9 gene-edited mice by using CRISPR/Cas9 technology, thereby providing an animal model for exploring the biological functions of this gene. According to the S100A9 gene sequence, the single-stranded small guide RNA (sgRNA) targeting exons 2 and 3 was transcribed in vitro, and a mixture of Cas9 mRNA and candidate sgRNA was injected into mouse fertilized eggs by microinjection. Early embryos were obtained and transferred to surrogate mice, and F0 mice were obtained and identified by PCR identification and gene sequencing. F0 mice were further mated with wild-type C57BL/6 mice to obtain F1 heterozygous mice, and then homozygous offspring were obtained through F1 mice self-crossing. Real-time PCR, Western blot and immunohistochemistry (IHC) were used to verify the expression and distribution of S100A9. In order to observe the pathological changes of mouse lung tissue using HE staining, an allergic asthma model was induced by ovalbumin from chicken egg white (OVA). The results showed that the 2 492 bp of exons 2, 3 of the S100A9 gene was successfully knocked out, and S100A9-/- mice with stable inheritance were obtained. Furthermore, it was found that S100A9 gene was highly expressed in the lung and spleen of wild-type mice. The expression of S100A9 mRNA and protein was not detected in the lung and spleen of S100A9-/- mice. However, compared with wild-type mice, the lungs of S100A9-/- mice showed a significantly worse inflammatory phenotype, and the proportion of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly increased in response to the treatment of OVA. These results suggest we have successfully constructed a new strain of S100A9-/- mice, and preliminarily confirmed that the lack of S100A9 function can aggravate airway inflammation in asthmatic mice, providing a new mouse model for further study of S100A9 gene function.


Subject(s)
Gene Targeting , Animals , Bronchoalveolar Lavage Fluid , CRISPR-Cas Systems/genetics , Calgranulin B , Disease Models, Animal , Gene Knockout Techniques , Lung , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin , Phenotype
5.
Cell Biol Int ; 44(9): 1870-1880, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32437058

ABSTRACT

The objective of this project was to find a bronchodilatory compound from herbs and clarify the mechanism. We found that the ethanol extract of Folium Sennae (EEFS) can relax airway smooth muscle (ASM). EEFS inhibited ASM contraction, induced by acetylcholine, in mouse tracheal rings and lung slices. High-performance liquid chromatography assay showed that EEFS contained emodin. Emodin had a similar reversal action. Acetylcholine-evoked contraction was also partially reduced by nifedipine (a selective inhibitor of L-type voltage-dependent Ca2+ channels, LVDCCs), YM-58483 (a selective inhibitor of store-operated Ca2+ entry, SOCE), as well as Y-27632 (an inhibitor of Rho-associated protein kinase). In addition, LVDCC- and SOCE-mediated currents and cytosolic Ca2+ elevations were inhibited by emodin. Emodin reversed acetylcholine-caused increases in phosphorylation of myosin phosphatase target subunit 1. Furthermore, emodin, in vivo, inhibited acetylcholine-induced respiratory system resistance in mice. These results indicate that EEFS-induced relaxation results from emodin inhibiting LVDCC, SOCE, and Ca2+ sensitization. These findings suggest that Folium Sennae and emodin may be new sources of bronchodilators.


Subject(s)
Emodin/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Acetylcholine/adverse effects , Acetylcholine/pharmacology , Animals , Bronchodilator Agents/metabolism , Bronchodilator Agents/pharmacology , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Muscle Contraction/physiology , Muscle, Smooth/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Myosin-Light-Chain Phosphatase/physiology , Plant Extracts/pharmacology , Senna Plant/metabolism
6.
J Pharmacol Sci ; 142(2): 60-68, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31843508

ABSTRACT

The purpose of this study was to screen a bronchodilator from old drugs and elucidate the underlying mechanism. Paracetamol (acetaminophen) is a widely used analgesic and antipyretic drug. It has been reported that it inhibits the generation of prostaglandin and histamine, which play roles in asthma. These findings led us to explore whether paracetamol could be a potential bronchodilator. Paracetamol inhibited high K+- and acetylcholine (ACH)-induced precontraction of mouse tracheal and bronchial smooth muscles. Moreover, the ACH-induced contraction was partially inhibited by nifedipine (selective blocker of LVDCCs), YM-58483 (selective inhibitor of store-operated Ca2+ entry (SOCE), canonical transient receptor potential 3 (TRPC3) and TRPC5 channels) and Y-27632 (selective blocker of ROCK, a linker of the Ca2+ sensitization pathway). In single airway smooth muscle cells, paracetamol blocked the currents sensitive to nifedipine and YM-58483, and inhibited intracellular Ca2+ increases. In addition, paracetamol inhibited ACH-induced phosphorylation of myosin phosphatase target subunit 1 (MYPT1, another linker of the Ca2+ sensitization pathway). Finally, in vivo paracetamol inhibited ACH-induced increases of mouse respirator system resistance. Collectively, we conclude that paracetamol inhibits ASM contraction through blocking LVDCCs, SOCE and/or TRPC3 and/or TRPC5 channels, and Ca2+ sensitization. These results suggest that paracetamol might be a new bronchodilator.


Subject(s)
Acetaminophen/pharmacology , Antipyretics/pharmacology , Asthma/metabolism , Calcium Channels/metabolism , Calcium Signaling/drug effects , Myocytes, Smooth Muscle/metabolism , Acetylcholine/chemistry , Acetylcholine/pharmacology , Animals , Asthma/drug therapy , Bronchi/drug effects , Calcium Channel Blockers/pharmacology , Cell Membrane Permeability/drug effects , Mice , Mice, Inbred BALB C , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Nifedipine/pharmacology , Potassium/metabolism
7.
Life Sci ; 238: 116953, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31626793

ABSTRACT

AIMS: This study focused on investigating whether NS8593 reverses airway smooth muscle (ASM) contraction and the underlying mechanism. MAIN METHODS: ASM contraction in mouse tracheal rings and lung slices was measured. Currents mediated by voltage dependent Ca2+ channels (VDCCs) and ACH-activated channels were measured using the whole-cell patch-clamp technique in single tracheal smooth muscle cells (TSMCs). Intracellular Ca2+ level and cell length were measured using an LSM 700 laser confocal microscope and a Zen 2010 software. Mouse respiratory system resistance (Rrs) was assessed using a FlexiVent FX system. KEY FINDINGS: High K+ (80 mM K+) and ACH induced ASM contraction in mouse tracheal rings and lung slices, which was partially relaxed by nifedipine (blocker of L-type VDCCs, LVDCCs), YM-58483 (blocker of store-operated Ca2+ entry (SOCE), transient receptor potential C3 (TRPC3) and TRPC5 channels), respectively. However, the contraction was completely reversed by NS8593, whereas, slightly relaxed by formoterol. ACH activated inward currents, which displayed linear and reversed around 0 mV, indicating the currents were mediated by non-selective cation channels (NSCCs). Moreover, these currents were blocked by YM-58483. In addition, such currents were abolished by NS8593, implicating that NS8593 inhibits the same channels. Besides, NS8593 inhibited increases of intracellular Ca2+ and the associated cell shortening. Finally, NS8593 inhibited ACH-induced increases of mouse respirator system resistance (Rrs). SIGNIFICANCE: Our results indicate that NS8593 inhibits LVDCCs and NSCCs, resulting in decreases of intracellular Ca2+ and then leading to ASM relaxation. These data suggest that NS8593 might be a new bronchodilator.


Subject(s)
1-Naphthylamine/analogs & derivatives , Asthma/drug therapy , Calcium Channels, L-Type/chemistry , Calcium/metabolism , Muscle Contraction/drug effects , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , 1-Naphthylamine/pharmacology , Animals , Anti-Allergic Agents/pharmacology , Asthma/chemically induced , Asthma/pathology , Calcium Channels, L-Type/metabolism , Male , Mice , Mice, Inbred BALB C , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Ovalbumin/toxicity
8.
Mikrochim Acta ; 186(8): 494, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31267250

ABSTRACT

This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods. Graphical abstract A cryonase-assisted signal amplification (CASA) method has been developed by using graphene oxide (GO) conjugated with a fluorophore-labeled aptamer for fluorescence signal generation. It has a large scope because it may be applied to numerous analytes.


Subject(s)
Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques , Graphite/chemistry , Nucleic Acid Probes/chemistry , Theophylline/analysis , Adenosine Triphosphate/chemistry , Fluorescence , Theophylline/chemistry
9.
Clin Exp Pharmacol Physiol ; 46(4): 329-336, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30609110

ABSTRACT

Azithromycin (AZM) has been used for the treatment of asthma and chronic obstructive pulmonary disease (COPD); however, the effects and underlying mechanisms of AZM remain largely unknown. The effects of AZM on airway smooth muscles (ASMs) and the underlying mechanisms were studied using isometric muscle force measurements, the examination of lung slices, imaging, and patch-clamp techniques. AZM completely inhibited acetylcholine (ACH)-induced precontraction of ASMs in animals (mice, guinea pigs, and rabbits) and humans. Two other macrolide antibiotics, roxithromycin and Klaricid, displayed a decreased inhibitory activity, and the aminoglycoside antibiotics penicillin and streptomycin did not have an inhibitory effect. Precontractions were partially inhibited by nifedipine (selective inhibitor of L-type voltage-dependent Ca2+ channels (LVDCCs)), Pyr3 (selective inhibitor of TRPC3 and/or STIM/Orai channels, which are nonselective cation channels (NSCCs)), and Y-27632 (selective inhibitor of Rho-associated kinase (ROCK)). Moreover, LVDCC- and NSCC-mediated currents were inhibited by AZM, and the latter were suppressed by the muscarinic (M) 2 receptor inhibitor methoctramine. AZM inhibited LVDCC Ca2+ permeant ion channels, M2 receptors, and TRPC3 and/or STIM/Orai, which decreased cytosolic Ca2+ concentrations and led to muscle relaxation. This relaxation was also enhanced by the inhibition of Ca2+ sensitization. Therefore, AZM has potential as a novel and potent bronchodilator. The findings of this study improve the understanding of the effects of AZM on asthma and COPD.

10.
Mol Cell Biochem ; 456(1-2): 95-104, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30604066

ABSTRACT

Lysine-specific demethylase 2A (KDM2A, also known as JHDM1A or FBXL11) plays an important role in regulating cell proliferation. However, the mechanisms on KDM2A controlling cell proliferation are varied among cell types, even controversial conclusions have been drawn. In order to elucidate the functions and underlying mechanisms for KDM2A controlling cell proliferation and apoptosis, we screened a KDM2A knockout HEK293T cell lines by CRISPR-Cas9 to illustrate the effects of KDM2A on both biological process. The results indicate that knocking down expression of KDM2A can significantly weaken HEK293T cell proliferation. The cell cycle analysis via flow cytometry demonstrate that knockdown expression of KDM2A will lead more cells arrested at G2/M phase. Through the RNA-seq analysis of the differential expressed genes between KDM2A knockdown HEK293T cells and wild type, we screened out that TGF-ß pathway was significantly downregulated in KDM2A knockdown cells, which indicates that TGF-ß signaling pathway might be the downstream target of KDM2A to regulate cell proliferation. When the KDM2A knockdown HEK293T cells were transient-transfected with KDM2A overexpression plasmid or treated by TGF-ß agonist hydrochloride, the cell proliferation levels can be partial or completely rescued. However, the TGF-ß inhibitor LY2109761 can significantly inhibit the KDM2A WT cells proliferation, but not the KDM2A knockdown HEK293T cells. Taken together, these findings suggested that KDM2A might be a key regulator of cell proliferation and cell cycle via impacting TGF-ß signaling pathway.


Subject(s)
Cell Proliferation , F-Box Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Transforming Growth Factor beta/metabolism , CRISPR-Cas Systems , F-Box Proteins/genetics , Gene Knockdown Techniques , HEK293 Cells , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Pyrazoles/pharmacology , Pyrroles/pharmacology , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/genetics
11.
Front Pharmacol ; 9: 1389, 2018.
Article in English | MEDLINE | ID: mdl-30564120

ABSTRACT

ß2-adrenoceptor agonists are commonly used as bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), however, they induce severe side effects. Therefore, developing new bronchodilators is essential. Herbal plants were extracted and the extracts' effect on airway smooth muscle (ASM) precontraction was assessed. The ethyl alcohol extract of semen cassiae (EESC) was extracted from Semen cassia. The effects of EESC on the ACh- and 80 mM K+-induced sustained precontraction in mouse and human ASM were evaluated. Ca2+ permeant ion channel currents and intracellular Ca2+ concentration were measured. HPLC analysis was employed to determine which compound was responsible for the EESC-induced relaxation. The EESC reversibly inhibited the ACh- and 80 mM K+-induced precontraction. The sustained precontraction depends on Ca2+ influx, and it was mediated by voltage-dependent L-type Ca2+ channels (LVDCCs), store-operated channels (SOCs), TRPC3/STIM/Orai channels. These channels were inhibited by aurantio-obtusin, one component of EESC. When aurantio-obtusin removed, EESC's action disappeared. In addition, aurantio-obtusin inhibited the precontraction of mouse and human ASM and intracellular Ca2+ increases. These results indicate that Semen cassia-contained aurantio-obtusin inhibits sustained precontraction of ASM via inhibiting Ca2+-permeant ion channels, thereby, which could be used to develop new bronchodilators.

12.
Mikrochim Acta ; 185(8): 375, 2018 07 14.
Article in English | MEDLINE | ID: mdl-30008087

ABSTRACT

An innovative signal amplification strategy assisted by RNase H is described here for the detection of DNA targets in a universal fashion. A tailor-made RNA molecular beacon (RMB) conjugated with a fluorescence resonance energy transfer (FRET) pair (fluorophore and quencher) was designed, characterized, and combined with the employment of RNase H. Its performance is compared to that of other nucleases including Exonuclease III and T7 exonuclease. Fluorometry, performed best at excitation/emission wavelengths of 490/520 nm, gives an amazingly low detection limit of 23 fM for target DNA. The method was verified by the determination of human hemochromatosis (HFE) gene. It is perceived that the method represents a versatile tool for the detection of a wide range of targets. Graphical Abstract An RNase H-assisted signal amplification (RASA) method for the fluorometric assay of nucleic acids has been developed by using a unique RNA molecular beacon (RNA MB) conjugated with a fluorophore (F) and quencher (Q) pair for signal generation.


Subject(s)
DNA/analysis , Fluorometry/methods , Limit of Detection , Oligonucleotide Probes/metabolism , Ribonuclease H/metabolism , DNA/metabolism , Hemochromatosis/genetics , Humans , Nucleic Acid Conformation , Oligonucleotide Probes/chemistry
13.
Cell Physiol Biochem ; 47(4): 1546-1555, 2018.
Article in English | MEDLINE | ID: mdl-29940574

ABSTRACT

BACKGROUND/AIMS: Tetraethylammonium chloride (TEA) induces oscillatory contractions in mouse airway smooth muscle (ASM); however, the generation and maintenance of oscillatory contractions and their role in ASM are unclear. METHODS: In this study, oscillations of ASM contraction and intracellular Ca2+ were measured using force measuring and Ca2+ imaging technique, respectively. TEA, nifedipine, niflumic acid, acetylcholine chloride, lithium chloride, KB-R7943, ouabain, 2-Aminoethoxydiphenyl borate, thapsigargin, tetrodotoxin, and ryanodine were used to assess the mechanism of oscillatory contractions. RESULTS: TEA induced depolarization, resulting in activation of L-type voltage-dependent Ca2+ channels (LVDCCs) and voltage-dependent Na+ (VNa) channels. The former mediated Ca2+ influx to trigger a contraction and the latter mediated Na+ entry to enhance the contraction via activating LVDCCs. Meanwhile, increased Ca2+-activated Cl- channels, inducing depolarization that resulted in contraction through LVDCCs. In addition, the contraction was enhanced by intracellular Ca2+ release from Ca2+ stores mediated by inositol (1,4,5)-trisphosphate receptors (IP3Rs). These pathways together produce the contractile phase of the oscillatory contractions. Furthermore, the increased Ca2+ activated the Na+-Ca2+ exchanger (NCX), which transferred Ca2+ out of and Na+ into the cells. The former induced relaxation and the latter activated Na+/K+-ATPase that induced hypopolarization to inactivate LVDCCs causing further relaxation. This can also explain the relaxant phase of the oscillatory contractions. Moreover, the depolarization induced by VNa channels and NCX might be greater than the hypopolarization caused by Na+/K+-ATPase alone, inducing LVDCC activation and resulting in further contraction. CONCLUSIONS: These data indicate that the TEA-induced oscillatory contractions were cooperatively produced by LVDCCs, VNa channels, Ca2+-activated Cl- channels, NCX, Na+/K+ ATPase, IP3Rs-mediated Ca2+ release, and extracellular Ca2+.


Subject(s)
Biological Clocks/drug effects , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Muscle Contraction/drug effects , Muscle, Smooth/metabolism , Tetraethylammonium/pharmacology , Trachea/metabolism , Animals , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred BALB C
14.
Biomed Pharmacother ; 104: 771-780, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29807227

ABSTRACT

Cancer cell resistance to current anticancer therapeutics as well as the side effects are still obstacles to successful cancer therapy. Hence, the development of novel anticancer agents or therapeutics is of vital significance, and especially rational adjuvant therapies containing low-cost natural products with multiple targets have attracted great interests. Triptolide, the main biocomponent of Tripterygium wilfordii Hook F, is restricted in clinical applications mainly due to its severe systemic toxicities, although it has shown strong antitumor activities in preclinical studies. Mounting evidence suggests that triptolide at low doses as an adjuvant therapeutic agent circumvents resistance to current anticancer therapies, enhances the anticancer effectiveness, and relieves toxicities of both triptolide and anticancer therapies. Furthermore, several unique antitumor targets of triptolide make it superior to other therapeutics. The molecular mechanisms of triptolide-induced anti-resistance and sensitization effects include changes in ATP-binding cassette transporters, induction of apoptosis pathways, increase in tumor suppressors and decrease in oncogenic factors, and interactions with the RNA polymerase II complex; targeting cancer stem cells and tumor-microenvironment-mediated resistance are also involved. Besides, some synthetic derivatives and novel delivery systems of triptolide are also developed to enhance the water-solubility and reduce the toxicity, which will also be discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Diterpenes/pharmacology , Diterpenes/therapeutic use , Drug Resistance, Neoplasm/drug effects , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Animals , Apoptosis/drug effects , Carcinogenesis/drug effects , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Humans
15.
Sci Rep ; 8(1): 3114, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449621

ABSTRACT

Because of the serious side effects of the currently used bronchodilators, new compounds with similar functions must be developed. We screened several herbs and found that Polygonum aviculare L. contains ingredients that inhibit the precontraction of mouse and human airway smooth muscle (ASM). High K+-induced precontraction in ASM was completely inhibited by nifedipine, a selective blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). However, nifedipine only partially reduced the precontraction induced by acetylcholine chloride (ACH). Additionally, the ACH-induced precontraction was partly reduced by pyrazole-3 (Pyr3), a selective blocker of TRPC3 and stromal interaction molecule (STIM)/Orai channels. These channel-mediated currents were inhibited by the compounds present in P. aviculare extracts, suggesting that this inhibition was mediated by LVDCCs, TRPC3 and/or STIM/Orai channels. Moreover, these channel-mediated currents were inhibited by quercetin, which is present in P. aviculare extracts. Furthermore, quercetin inhibited ACH-induced precontraction in ASM. Overall, our data indicate that the ethyl acetate fraction of P. aviculare and quercetin can inhibit Ca2+-permeant LVDCCs, TRPC3 and STIM/Orai channels, which inhibits the precontraction of ASM. These findings suggest that P. aviculare could be used to develop new bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease.


Subject(s)
Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Plant Extracts/pharmacology , Polygonum/chemistry , Quercetin/pharmacology , Acetylcholine/pharmacology , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Humans , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Muscle, Smooth/metabolism , Nifedipine/pharmacology , TRPC Cation Channels/metabolism
16.
Planta Med ; 84(2): 83-90, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28817840

ABSTRACT

This study aimed to elucidate the mechanisms of nuciferine (a main aporphine alkaloid of lotus leaf extract), which can induce relaxation in contracted tracheal rings. Under Ca2+-free and 2 mM Ca2+ conditions, we found that nuciferine had no effect on the resting muscle tone of tracheal rings. In contrast, nuciferine relaxed high K+-contracted mouse tracheal rings in a dose-dependent manner and inhibited both Ca2+ influx and voltage-dependent L-type Ca2+ channel currents induced by high K+. Similarly, nuciferine also inhibited acetylcholine-induced contractions in mouse tracheal rings in a dose-dependent manner. Meanwhile, both acetylcholine-induced intracellular Ca2+ influx and whole-cell currents of nonselective cation channels were blocked by nuciferine. Together, the results indicate that nuciferine-induced relaxation in tracheal rings mainly occurred due to the inhibition of extracellular Ca2+ influx through the blockade of voltage-dependent L-type Ca2+ channels and/or nonselective cation channels. These results suggest that nuciferine has a therapeutic effect on respiratory diseases associated with the aberrant contraction of airway smooth muscles and/or bronchospasm.


Subject(s)
Aporphines/pharmacology , Drugs, Chinese Herbal/pharmacology , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Nelumbo/chemistry , Parasympatholytics/pharmacology , Trachea/drug effects , Acetylcholine/metabolism , Animals , Aporphines/chemistry , Aporphines/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Muscle, Smooth/metabolism
17.
Int J Biol Sci ; 13(10): 1242-1253, 2017.
Article in English | MEDLINE | ID: mdl-29104491

ABSTRACT

The effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone, as well as the underlying mechanisms, are not clear. In this investigation, we elucidated the underlying mechanisms of the distinct effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone. In CASMCs, owing to the functional loss of Ca2+-activated Cl- (Clca) channels, Ca2+ sparks activated large-conductance Ca2+-activated K+ channels (BKs), resulting in a decreases in tone against a spontaneous depolarization-caused high tone in the resting state. In ASMCs, Ca2+ sparks induced relaxation through BKs and contraction via Clca channels. However, the integrated result was contraction because Ca2+ sparks activated BKs prior to Clca channels and Clca channels-induced depolarization was larger than BKs-caused hyperpolarization. However, the effects of Ca2+ sparks on both cell types were determined by L-type voltage-dependent Ca2+ channels (LVDCCs). In addition, compared with ASMCs, CASMCs had great and higher amplitude Ca2+ sparks, a higher density of BKs, and higher Ca2+ and voltage sensitivity of BKs. These differences enhanced the ability of Ca2+ sparks to decrease CASMC and to increase ASMC tone. The higher Ca2+ and voltage sensitivity of BKs in CASMCs than ASMCs were determined by the ß1 subunits. Moreover, Ca2+ sparks showed the similar effects on human CASMC and ASMC tone. In conclusions, Ca2+ sparks decrease CASMC tone and increase ASMC tone, mediated by BKs and Clca channels, respectively, and finally determined by LVDCCs.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Muscle, Smooth/metabolism , Animals , Calcium Signaling/genetics , Cerebral Arteries/metabolism , Cerebral Arteries/physiology , Humans , Mice , Muscle, Smooth/physiology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Patch-Clamp Techniques
18.
Clin Exp Pharmacol Physiol ; 44(10): 1053-1059, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28682475

ABSTRACT

The effects of hypertonic solution on airway smooth muscle (ASM) contraction and the underlying mechanisms are largely unknown. We found that hypertonic saline (HS) inhibited acetylcholine (ACh)-induced contraction of ASM from the mouse trachea and human bronchi. In single mouse ASM cells (ASMCs), ACh induced an increase in intracellular Ca2+ that was further enhanced by 5% NaCl, indicating that the HS-induced inhibition of ASM contraction was not mediated by a decrease in cytosolic Ca2+ . The Rho-associated kinase (ROCK) inhibitor Y-27632 relaxed ACh-induced precontraction of mouse tracheal rings. However, such inhibition was not observed after the relaxation induced by 5% NaCl. Moreover, the incubation of mouse tracheal rings with 5% NaCl decreased ACh-induced phosphorylation of myosin light chain 20 and myosin phosphatase target subunit 1. These data indicate that HS inhibits the contraction of ASM by inhibiting Ca2+ sensitization, not by decreasing intracellular Ca2+ .


Subject(s)
Calcium/metabolism , Lung/physiology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Saline Solution, Hypertonic/pharmacology , Acetylcholine/pharmacology , Animals , Asthma/metabolism , Asthma/pathology , Asthma/physiopathology , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Lung/drug effects , Male , Mice , Mice, Inbred BALB C , Muscle, Smooth/cytology , Muscle, Smooth/metabolism
19.
Cell Biosci ; 7: 28, 2017.
Article in English | MEDLINE | ID: mdl-28546857

ABSTRACT

BACKGROUND: Chloroquine, a bitter tastant, inhibits Ca2+ signaling, resulting in suppression of B cell activation; however, the inhibitory mechanism remains unclear. RESULTS: In this study, thapsigargin (TG), but not caffeine, induced sustained intracellular Ca2+ increases in mouse splenic primary B lymphocytes, which were markedly inhibited by chloroquine. Under Ca2+-free conditions, TG elicited transient Ca2+ increases, which additionally elevated upon the restoration of 2 mM Ca2+. The former were from release of intracellular Ca2+ store and the latter from Ca2+ influx. TG-induced release was inhibited by 2-APB (an inhibitor of inositol-3-phosphate receptors, IP3Rs) and chloroquine, and TG-caused influx was inhibited by pyrazole (Pyr3, an inhibitor of transient receptor potential C3 (TRPC3) and stromal interaction molecule (STIM)/Orai channels) and chloroquine. Moreover, chloroquine also blocked Ca2+ increases induced by the engagement of B cell receptor (BCR) with anti-IgM. CONCLUSIONS: These results indicate that chloroquine inhibits Ca2+ elevations in splenic B cells through inhibiting Ca2+ permeable IP3R and TRPC3 and/or STIM/Orai channels. These findings suggest that chloroquine would be a potent immunosuppressant.

20.
ChemMedChem ; 12(3): 250-256, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28098432

ABSTRACT

Mitochondria are double-membrane-bound organelles involved mainly in supplying cellular energy, but also play roles in signaling, cell differentiation, and cell death. Mitochondria are implicated in carcinogenesis, and therefore dozens of lethal signal transduction pathways converge on these organelles. Accordingly, mitochondria provide an alternative target for cancer management. In this study, F16, a drug that targets mitochondria, and chlorambucil (CBL), which is indicated for the treatment of selected human neoplastic diseases, were covalently linked, resulting in the synthesis of a multi-mitochondrial anticancer agent, FCBL. FCBL can associate with human serum albumin (HSA) to form an HSA-FCBL nanodrug, which selectively recognizes cancer cells, but not normal cells. Systematic investigations show that FCBL partially accumulates in cancer cell mitochondria to depolarize mitochondrial membrane potential (MMP), increase reactive oxygen species (ROS), and attack mitochondrial DNA (mtDNA). With this synergistic effect on multiple mitochondrial components, the nanodrug can effectively kill cancer cells and overcome multiple drug resistance. Furthermore, based on its therapeutic window, HSA-FCBL exhibits clinically significant differential cytotoxicity between normal and malignant cells. Finally, while drug dosage and drug resistance typically limit first-line mono-chemotherapy, HSA-FCBL, with its ability to compromise mitochondrial membrane integrity and damage mtDNA, is expected to overcome those limitations to become an ideal candidate for the treatment of neoplastic disease.


Subject(s)
Antineoplastic Agents/toxicity , Drug Resistance, Neoplasm/drug effects , Mitochondria/drug effects , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chlorambucil/chemistry , Chlorambucil/toxicity , DNA Damage/drug effects , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Microscopy, Confocal , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...