Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virol Sin ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697263

ABSTRACT

In recent years, substantial advancements have been achieved in understanding the diversity of the human virome and its intricate roles in human health and diseases. Despite this progress, the field of human virome research remains nascent, primarily hindered by the lack of effective methods, particularly in the domain of computational tools. This perspective systematically outlines ten computational challenges spanning various types of virome studies. These challenges arise due to the vast diversity of viromes, the absence of a universal marker gene in viral genomes, the low abundance of virus populations, the remote or minimal homology of viral proteins to known proteins, and the highly dynamic and heterogeneous nature of viromes. For each computational challenge, we discuss the underlying reasons, current research progress, and potential solutions. The resolution of these challenges necessitates ongoing collaboration among computational scientists, virologists, and multidisciplinary experts. In essence, this perspective serves as a comprehensive guide for directing computational efforts in human virome studies.

2.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38343322

ABSTRACT

Vaccination stands as the most effective and economical strategy for prevention and control of influenza. The primary target of neutralizing antibodies is the surface antigen hemagglutinin (HA). However, ongoing mutations in the HA sequence result in antigenic drift. The success of a vaccine is contingent on its antigenic congruence with circulating strains. Thus, predicting antigenic variants and deducing antigenic clusters of influenza viruses are pivotal for recommendation of vaccine strains. The antigenicity of influenza A viruses is determined by the interplay of amino acids in the HA1 sequence. In this study, we exploit the ability of convolutional neural networks (CNNs) to extract spatial feature representations in the convolutional layers, which can discern interactions between amino acid sites. We introduce PREDAC-CNN, a model designed to track antigenic evolution of seasonal influenza A viruses. Accessible at http://predac-cnn.cloudna.cn, PREDAC-CNN formulates a spatially oriented representation of the HA1 sequence, optimized for the convolutional framework. It effectively probes interactions among amino acid sites in the HA1 sequence. Also, PREDAC-CNN focuses exclusively on physicochemical attributes crucial for the antigenicity of influenza viruses, thereby eliminating unnecessary amino acid embeddings. Together, PREDAC-CNN is adept at capturing interactions of amino acid sites within the HA1 sequence and examining the collective impact of point mutations on antigenic variation. Through 5-fold cross-validation and retrospective testing, PREDAC-CNN has shown superior performance in predicting antigenic variants compared to its counterparts. Additionally, PREDAC-CNN has been instrumental in identifying predominant antigenic clusters for A/H3N2 (1968-2023) and A/H1N1 (1977-2023) viruses, significantly aiding in vaccine strain recommendation.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Vaccines , Influenza A virus/genetics , Influenza A Virus, H3N2 Subtype/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Seasons , Retrospective Studies , Antigens, Viral/genetics , Neural Networks, Computer , Amino Acids
SELECTION OF CITATIONS
SEARCH DETAIL