Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947669

ABSTRACT

The intrinsic magnetic topological insulator MnBi2Te4 has attracted much attention due to its special magnetic and topological properties. To date, most reports have focused on bulk or flake samples. For material integration and device applications, the epitaxial growth of MnBi2Te4 film in nanoscale is more important but challenging. Here, we report the growth of self-regulated MnBi2Te4 films by the molecular beam epitaxy. By tuning the substrate temperature to the optimal temperature for the growth surface, the stoichiometry of MnBi2Te4 becomes sensitive to the Mn/Bi flux ratio. Excessive and deficient Mn resulted in the formation of a MnTe and Bi2Te3 phase, respectively. The magnetic measurement of the 7 SL MnBi2Te4 film probed by the superconducting quantum interference device (SQUID) shows that the antiferromagnetic order occurring at the Néel temperature 22 K is accompanied by an anomalous magnetic hysteresis loop along the c-axis. The band structure measured by angle-resolved photoemission spectroscopy (ARPES) at 80 K reveals a Dirac-like surface state, which indicates that MnBi2Te4 has topological insulator properties in the paramagnetic phase. Our work demonstrates the key growth parameters for the design and optimization of the synthesis of nanoscale MnBi2Te4 films, which are of great significance for fundamental research and device applications involving antiferromagnetic topological insulators.

2.
J Microbiol Biotechnol ; 28(12): 2009-2018, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30304917

ABSTRACT

Leuconostoc mesenteroides can be used to produce mannitol by fermentation, but the mannitol productivity is not high. Therefore, in this study modify the chromosome of Leuconostoc mesenteroides by genetic methods to obtain high-yield strains of mannitol production. In this study, gene knock-out strains and gene knock-in strains were constructed by a two-step homologous recombination method. The mannitol productivity of the pat gene (which encodes phosphate acetyltransferase) deleteon strain (Δpat::amy), fk gene (which encodes fructokinase) deleteon strain (Δfk::amy) and stpk gene (which encodes serine-threonine protein kinase) deleteon strain (Δstpk::amy) were all increased compared to the wild type, and the productivity of mannitol for each strain was 84.8%, 83.5% and 84.1% respectively. The mannitol productivity of the mdh gene (which encodes mannitol dehydrogenase) knock-in strains (Δpat::mdh, Δfk::mdh and Δstpk::mdh) was increased to a higher level than that of the single-gene deletion strains, and the productivity of mannitol for each was 96.5%, 88% and 93.2%, respectively. The multi-mutant strain ΔdtsΔldhΔpat::mdhΔstpk::mdhΔfk::mdh had mannitol productivity of 97.3%. This work shows that multi-gene knock-out and gene knock-in strains have the greatest impact on mannitol production, with mannitol productivity of 97.3% and an increase of 24.7% over wild type. This study used the methods of gene knock-out and gene knock-in to genetically modify the chromosome of Leuconostoc mesenteroides. It is of great significance that we increased the ability of Leuconostoc mesenteroides to produce mannitol and revealed its broad development prospects.


Subject(s)
Gene Knock-In Techniques/methods , Gene Knockout Techniques/methods , Genes, Bacterial/genetics , Leuconostoc mesenteroides/genetics , Leuconostoc mesenteroides/metabolism , Mannitol/metabolism , Chromosomes, Bacterial , DNA, Bacterial , Fermentation , Fructokinases/genetics , Gene Deletion , Homologous Recombination , Mannitol Dehydrogenases/genetics , Phosphate Acetyltransferase/genetics , Proto-Oncogene Proteins c-akt/genetics , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...