Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(24): 10070-10074, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38855827

ABSTRACT

The separation of C2H2/CO2 mixtures is a very important but highly challenging task due to their comparable physical natures and relative sizes. Herein, we report a europium-based 3D microporous MOF with a 4-connected two-nodal net with {4·53·62}2{42·62·82} topology, {[Eu2(pzdc)(ox)2(H2O)4]·5H2O}n (1) (H2pzdc = 2,5-pyrazinedicarboxylic acid, H2ox = oxalic acid), prepared by a hydrothermal method involving in situ generation of 2,5-pyrazinedicarboxylate and oxalate ligands. Two different temperatures were utilized to create two porous materials (1a and 1b) with channels of 4.8 × 5.4 Å and 4.1 × 6.3 Å, and 4.8 × 5.4 and 4.6 × 8.7 Å2, respectively. 1b shows a superior ability to selectively capture C2H2 from C2H2/CO2 as compared with 1a. At 1 bar and 298 K, 1b takes up 4.10 mmol g-1 C2H2 and 1.84 mmol g-1 CO2, respectively. In addition, at 298 K and 1 bar, 1b has a high selectivity for C2H2 over CO2, with an IAST selectivity of 12.7 while the value for 1a is 3.2. The separation of C2H2/CO2 with 1b also exhibits good reusability.

2.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745965

ABSTRACT

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

3.
Acad Radiol ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38490840

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to construct a machine learning radiomics-based model using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images to evaluate non-sentinel lymph node (NSLN) metastasis in Chinese breast cancer (BC) patients who underwent total mastectomy (TM) and had 1-2 positive sentinel lymph nodes (SLNs). MATERIALS AND METHODS: In total, 494 patients were retrospectively enrolled from two hospitals, and were divided into the training (n = 286), internal validation (n = 122), and external validation (n = 86) cohorts. Features were extracted from DCE-MRI images for each patient and screened. Six ML classifies were trained and the best classifier was evaluated to calculate radiomics (Rad)-scores. A combined model was developed based on Rad-scores and clinical risk factors, then the calibration, discrimination, reclassification, and clinical usefulness were evaluated. RESULTS: 14 radiomics features were ultimately selected. The random forest (RF) classifier showed the best performance, with the highest average area under the curve (AUC) of 0.833 in the validation cohorts. The combined model incorporating RF-based Rad-scores, tumor size, lymphovascular invasion, and proportion of positive SLNs resulted in the best discrimination ability, with AUCs of 0.903, 0.890, and 0.836 in the training, internal validation, and external validation cohorts, respectively. Furthermore, the combined model significantly improved the classification accuracy and clinical benefit for NSLN metastasis prediction. CONCLUSION: A RF-based combined model using DCE-MRI images exhibited a promising performance for predicting NSLN metastasis in Chinese BC patients who underwent TM and had 1-2 positive SLNs, thereby aiding in individualized clinical treatment decisions.

4.
Liver Int ; 44(6): 1351-1362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436551

ABSTRACT

BACKGROUND AND AIMS: Accurate preoperative prediction of microvascular invasion (MVI) and recurrence-free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI and RFS using preoperative MRI scans. METHODS: Utilising a retrospective dataset of 725 HCC patients from seven institutions, we developed and validated a multitask deep learning model focused on predicting MVI and RFS. The model employs a transformer architecture to extract critical features from preoperative MRI scans. It was trained on a set of 234 patients and internally validated on a set of 58 patients. External validation was performed using three independent sets (n = 212, 111, 110). RESULTS: The multitask deep learning model yielded high MVI prediction accuracy, with AUC values of 0.918 for the training set and 0.800 for the internal test set. In external test sets, AUC values were 0.837, 0.815 and 0.800. Radiologists' sensitivity and inter-rater agreement for MVI prediction improved significantly when integrated with the model. For RFS, the model achieved C-index values of 0.763 in the training set and ranged between 0.628 and 0.728 in external test sets. Notably, PA-TACE improved RFS only in patients predicted to have high MVI risk and low survival scores (p < .001). CONCLUSIONS: Our deep learning model allows accurate MVI and survival prediction in HCC patients. Prospective studies are warranted to assess the clinical utility of this model in guiding personalised treatment in conjunction with clinical criteria.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Magnetic Resonance Imaging , Neoplasm Invasiveness , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Magnetic Resonance Imaging/methods , Retrospective Studies , Female , Male , Middle Aged , Aged , Microvessels/diagnostic imaging , Microvessels/pathology , Disease-Free Survival , Neoplasm Recurrence, Local
SELECTION OF CITATIONS
SEARCH DETAIL