Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 174(4): e13751, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36004736

ABSTRACT

Finding the adequate balance between wood formation and abiotic stress resistance is still an important challenge for industrial woody crops. In this study, PeNAC122, a member of the NAC transcription factor (TF) family highly expressed in xylem, was cloned from Populus euphratica. Tissue expression and ß-glucuronidase (GUS) staining showed that PeNAC122 was exclusively expressed in phloem fiber and secondary xylem of stems. Subcellular and yeast transactivation assays confirmed that PeNAC122 protein existed in the nucleus and did not have transcriptional activation and inhibitory activity. Overexpression of PeNAC122 poplar lines exhibited reduced plant height, thickened xylem, and accumulated lignin content in stems, and also upregulates the expression of secondary cell wall biosynthetic genes. Moreover, overexpression of PeNAC122 lines displayed more tolerance to PEG6000-induced osmotic stress, with stronger photosynthetic performance, higher antioxidant enzyme activity, and less accumulation of reactive oxygen species in leaves, and higher expression levels of stress response genes DREB2A, RD29, and NCED3. These results indicate that PeNAC122 plays a crucial role in wood formation and abiotic stress tolerance, which, in addition to potential use in improving wood quality, provides further insight into the role of NAC family TFs in balancing wood development and abiotic stress resistance.


Subject(s)
Populus , Cell Wall/metabolism , Gene Expression Regulation, Plant/genetics , Osmotic Pressure , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Populus/metabolism , Wood/genetics , Wood/metabolism , Xylem/genetics
2.
Ecotoxicol Environ Saf ; 226: 112868, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34619477

ABSTRACT

With the booming demand of the electric vehicle industry, the concentration of manganese (Mn) and cobalt (Co) flowing into land ecosystems has also increased significantly. While these transition metals can promote the growth and development of plants, they may become toxic under high concentrations. It is thus important to understand how Mn and Co are distributed in plants to develop novel germplasms for the remediation of these heavy metals in contaminated soils. Here, an MTP gene that encodes the CDF (cation diffusion facilitator) protein in Populus trichocarpa, PtrMTP6, was screened as the key gene involved in the distribution of both Mn and Co in poplar. The PtrMTP6-GFP fusion protein was co-localized with the mRFP-VSR2, showing that PtrMTP6 proteins are present at the pre-vacuolar compartment (PVC). Yeast mutant complementation assays further identified that PtrMTP6 serves as a Mn and Co transporter, reducing yeast cell toxicity after exposure to excessive Mn or Co. Histochemical analyses showed that PtrMTP6 was mainly expressed in phloem, suggesting that PtrMTP6 probably involved in the Mn and Co transport via phloem in plants. Under excess Co, PtrMTP6 overexpressing poplar lines were more severely damaged than the control due to higher Co accumulations in young tissue. PtrMTP6 overexpressing lines showed little change in their tolerance to excess Mn, although young tissues also accumulated more Mn. PtrMTP6 play important roles in Mn and Co distribution in poplar and further research on its regulation will be important to increase bioremediation in Mn and Co polluted ecosystems.


Subject(s)
Cation Transport Proteins , Populus , Cobalt/toxicity , Ecosystem , Manganese/metabolism , Manganese/toxicity , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics , Populus/metabolism
3.
Int J Mol Sci ; 21(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121430

ABSTRACT

Metal tolerance proteins (MTPs) are plant divalent cation transporters that play important roles in plant metal tolerance and homeostasis. Poplar is an ideal candidate for the phytoremediation of heavy metals because of its numerous beneficial attributes. However, the definitive phylogeny and heavy metal transport mechanisms of the MTP family in poplar remain unknown. Here, 22 MTP genes in P. trichocarpa were identified and classified into three major clusters and seven groups according to phylogenetic relationships. An evolutionary analysis suggested that PtrMTP genes had undergone gene expansion through tandem or segmental duplication events. Moreover, all PtrMTPs were predicted to localize in the vacuole and/or cell membrane, and contained typical structural features of the MTP family, cation efflux domain. The temporal and spatial expression pattern analysis results indicated the involvement of PtrMTP genes in poplar developmental control. Under heavy metal stress, most of PtrMTP genes were induced by at least two metal ions in roots, stems or leaves. In addition, PtrMTP8.1, PtrMTP9 and PtrMTP10.4 displayed the ability of Mn transport in yeast cells, and PtrMTP6 could transport Co, Fe and Mn. These findings will provide an important foundation to elucidate the biological functions of PtrMTP genes, and especially their role in regulating heavy metal tolerance in poplar.


Subject(s)
Genome-Wide Association Study , Plant Roots/genetics , Populus/genetics , Stress, Physiological/genetics , Amino Acid Sequence/genetics , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant/genetics , Metals, Heavy/toxicity , Multigene Family/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Roots/drug effects , Populus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...