Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Appl Spectrosc ; : 37028241261097, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881287

ABSTRACT

This paper describes an approach based on the method of terahertz time-domain spectroscopy, which allows the analysis of dynamical hydration shells of proteins with a thickness of 1-2 nm. Using the example of bovine serum albumin in three conformations, it is shown that the hydration shells of the protein are characterized by increased binding of water molecules in the primary hydration layers, and in more distant areas of hydration, on the contrary, the water structure is somewhat destroyed. The fraction of free or weakly bound molecules, usually observed in the structure of liquid water in hydration shells, become more numerous but its average binding is greater than in undisturbed water. The energy distribution of hydrogen bonds in hydration shells is narrowed compared to undisturbed water. All these manifestations of hydration are most pronounced for the native conformation of the protein. Also, the hydration shells of the native protein are characterized by a smaller number of hydrogen bonds and a tendency to decrease their average energy compared to non-native conformations. The fact of a pronounced peculiarity of the hydration shells of the protein in the native conformation has been noted for different proteins before. However, the methodological approach used in this work for the first time allowed this peculiarity to be described by specific parameters of the intermolecular structure and dynamics of water.

2.
Biophys Rev ; 15(5): 833-849, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37974994

ABSTRACT

The hydration of biomolecules is one of the fundamental processes underlying the construction of living matter. The formation of the native conformation of most biomolecules is possible only in an aqueous environment. At the same time, not only water affects the structure of biomolecules, but also biomolecules affect the structure of water, forming hydration shells. However, the study of the structure of biomolecules is given much more attention than their hydration shells. A real breakthrough in the study of hydration occurred with the development of the THz spectroscopy method, which showed that the hydration shell of biomolecules is not limited to 1-2 layers of strongly bound water, but also includes more distant areas of hydration with altered molecular dynamics. This review examines the fundamental features of the THz frequency range as a source of information about the structural and dynamic characteristics of water that change during hydration. The applied approaches to the study of hydration shells of biomolecules based on THz spectroscopy are described. The data on the hydration of biomolecules of all main types obtained from the beginning of the application of THz spectroscopy to the present are summarized. The emphasis is placed on the possible participation of extended hydration shells in the realization of the biological functions of biomolecules and at the same time on the insufficient knowledge of their structural and dynamic characteristics.

3.
Int J Mol Sci ; 24(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37569860

ABSTRACT

The effect of hyperglycemia on the morphology of individual mitochondria and the state of the mitochondrial network in primary mouse lung microvascular endotheliocytes and human dermal fibroblasts has been investigated. The cells were exposed to high (30 mM) and low (5.5 mM) glucose concentrations for 36 h. In primary endotheliocytes, hyperglycemic stress induced a significant increase in the number of mitochondria and a decrease in the interconnectivity value of the mitochondrial network, which was associated with a decrease in the mean size of the mitochondria. Analysis of the mRNA level of the genes of proteins responsible for mitochondrial biogenesis and mitophagy revealed an increase in the expression level of the Ppargc1a, Pink1, and Parkin genes, indicating stimulated mitochondrial turnover in endotheliocytes under high glucose conditions. In primary fibroblasts, hyperglycemia caused a decrease in the number of mitochondria and an increase in their size. As a result, the mitochondria exhibited higher values for elongation. In parallel, the mRNA level of the Ppargc1a and Mfn2 genes in fibroblasts exposed to hyperglycemia was reduced. These findings indicate that high glucose concentrations induced cell-specific morphological rearrangements of individual mitochondria and the mitochondrial network, which may be relevant during mitochondria-targeted drug testing and therapy for hyperglycemic and diabetic conditions.

4.
Biomolecules ; 13(7)2023 06 29.
Article in English | MEDLINE | ID: mdl-37509089

ABSTRACT

Turpentine oil, owing to the presence of 7-50 terpenes, has analgesic, anti-inflammatory, immunomodulatory, antibacterial, anticoagulant, antioxidant, and antitumor properties, which are important for medical emulsion preparation. The addition of turpentine oil to squalene emulsions can increase their effectiveness, thereby reducing the concentration of expensive and possibly deficient squalene, and increasing its stability and shelf life. In this study, squalene emulsions were obtained by adding various concentrations of turpentine oil via high-pressure homogenization, and the safety and effectiveness of the obtained emulsions were studied in vitro and in vivo. All emulsions showed high safety profiles, regardless of the concentration of turpentine oil used. However, these emulsions exhibited dose-dependent effects in terms of both efficiency and storage stability, and the squalene emulsion with 1.0% turpentine oil had the most pronounced adjuvant and cytokine-stimulating activity as well as the most pronounced stability indicators when stored at room temperature. Thus, it can be concluded that the squalene emulsion with 1% turpentine oil is a stable, monomodal, and reliably safe ultradispersed emulsion and may have pleiotropic effects with pronounced immunopotentiating properties.


Subject(s)
Squalene , Turpentine , Emulsions , Squalene/pharmacology , Oils , Adjuvants, Immunologic
5.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674570

ABSTRACT

A giant multidomain protein of striated and smooth vertebrate muscles, titin, consists of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing ß-sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms of ~500-1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMTHMW, ~1500 kDa). As confirmed by X-ray diffraction analysis, under near-physiological conditions, the protein formed amorphous amyloid aggregates with a quaternary cross-ß structure within a relatively short time (~60 min). As shown by circular dichroism and Fourier-transform infrared spectroscopy, the quaternary cross-ß structure-unlike other amyloidogenic proteins-formed without changes in the SMTHMW secondary structure. SMTHMW aggregates partially disaggregated upon increasing the ionic strength above the physiological level. Based on the data obtained, it is not the complete protein but its particular domains/segments that are likely involved in the formation of intermolecular interactions during SMTHMW amyloid aggregation. The discovered properties of titin position this protein as an object of interest for studying amyloid aggregation in vitro and expanding our views of the fundamentals of amyloidogenesis.


Subject(s)
Amyloid , Avian Proteins , Chickens , Connectin , Muscle, Smooth , Animals , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Chickens/metabolism , Connectin/metabolism , Muscle, Smooth/metabolism , Avian Proteins/metabolism
6.
Biomedicines ; 10(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36428470

ABSTRACT

The present study evaluates the cytotoxicity of a previously synthesized conjugate of betulinic acid (BA) with the penetrating cation F16 on breast adenocarcinoma (MCF-7) and human fibroblast (HF) cell lines, and also shows the mechanism underlying its membranotropic action. It was confirmed that the conjugate exhibits higher cytotoxicity compared to native BA at low doses also blocking the proliferation of both cell lines and causing cell cycle arrest in the G0/G1 phase. We show that the conjugate indeed has a high potential for accumulation in mitochondria, being visualized in these organelles, which is most pronounced in cancer cells. The effect of the conjugate was observed to be accompanied by ROS hyperproduction in both cancerous and healthy cells, despite the lower base level of ROS in the latter. Along with this, using artificial liposomes, we determined that the conjugate is able to influence the phase state of lipid membranes, make them more fluid, and induce nonspecific permeabilization contributing to the overall cytotoxicity of the tested agent. We conclude that the studied BA-F16 conjugate does not have significant selective cytotoxicity, at least against the studied breast cancer cell line MCF-7.

7.
Biochemistry (Mosc) ; 87(7): 605-616, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36154883

ABSTRACT

Effect of alisporivir (a mitochondrial permeability transition pore inhibitor) on the development of mitochondrial dysfunction under hyperglycemic conditions in the primary culture of mouse lung endothelial cells was investigated in this work. We demonstrated that hyperglycemia (30 mM glucose for 24 h) leads to the decrease in viability of the pulmonary endotheliocytes, causes mitochondrial dysfunction manifested by the drop in membrane potential and increase in superoxide anion generation as well as facilitates opening of the mitochondrial permeability transition pore (MPT pore). Incubation of endothelial cells with 5 µM alisporivir under hyperglycemic conditions leads to the increase in cell viability, restoration of the membrane potential level and of the MPT pore opening activity to control values. Hyperglycemia causes increased mitophagy in the lung endothelial cells: we observed increase in the degree of colocalization of mitochondria and lysosomes and upregulation of the Parkin gene expression. Alisporivir restores these parameters back to the levels observed in the control cells. Hyperglycemia results in the increase in the expression of the Drp1 gene in endotheliocytes responsible for synthesis of the protein involved in the process of mitochondria fission. Alisporivir does not significantly alter expression of the genes. The paper discusses mechanisms of the effect of alisporivir on mitochondrial dysfunction in murine pulmonary endotheliocytes under conditions of hyperglycemia.


Subject(s)
Hyperglycemia , Mitochondrial Permeability Transition Pore , Animals , Cyclosporine , Endothelial Cells/metabolism , Glucose/metabolism , Hyperglycemia/metabolism , Lung/metabolism , Mice , Mitochondria/metabolism , Superoxides/metabolism , Ubiquitin-Protein Ligases/genetics
8.
Molecules ; 27(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35630826

ABSTRACT

Self-assembly of organic ions in aqueous solutions is a hot topic at the present time, and substances that are well-soluble in water are usually studied. In this work, aqueous solutions of sodium diclofenac are investigated, which, like most medicinal compounds, is poorly soluble in water. Classical MD modeling of an aqueous solution of diclofenac sodium showed equilibrium between the hydrated anion and the hydrated dimer of the diclofenac anion. The assignment and interpretation of the bands in the UV, NIR, and IR spectra are based on DFT calculations in the discrete-continuum approximation. It has been shown that the combined use of spectroscopic methods in various frequency ranges with classical MD simulations and DFT calculations provides valuable information on the association processes of medical compounds in aqueous solutions. Additionally, such a combined application of experimental and calculation methods allowed us to put forward a hypothesis about the mechanism of the effect of diclofenac sodium in high dilutions on a solution of diclofenac sodium.


Subject(s)
Diclofenac , Water , Anions , Ions , Solutions/chemistry , Water/chemistry
9.
Exp Biol Med (Maywood) ; 247(5): 416-425, 2022 03.
Article in English | MEDLINE | ID: mdl-34727745

ABSTRACT

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer's type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


Subject(s)
Alzheimer Disease , Spatial Memory , Administration, Intranasal , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Hippocampus , Humans , Maze Learning , Mice , Mice, Inbred Strains , Mitochondria , Olfactory Bulb/metabolism , Olfactory Bulb/surgery
10.
Int J Mol Sci ; 22(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34769399

ABSTRACT

Despite more than a century of research on the hydration of biomolecules, the hydration of carbohydrates is insufficiently studied. An approach to studying dynamic hydration shells of carbohydrates in aqueous solutions based on terahertz time-domain spectroscopy assay is developed in the current work. Monosaccharides (glucose, galactose, galacturonic acid) and polysaccharides (dextran, amylopectin, polygalacturonic acid) solutions were studied. The contribution of the dissolved carbohydrates was subtracted from the measured dielectric permittivities of aqueous solutions based on the corresponding effective medium models. The obtained dielectric permittivities of the water phase were used to calculate the parameters describing intermolecular relaxation and oscillatory processes in water. It is established that all of the analyzed carbohydrates lead to the increase of the binding degree of water. Hydration shells of monosaccharides are characterized by elevated numbers of hydrogen bonds and their mean energies compared to undisturbed water, as well as by elevated numbers and the lifetime of free water molecules. The axial orientation of the OH(4) group of sugar facilitates a wider distribution of hydrogen bond energies in hydration shells compared to equatorial orientation. The presence of the carboxylic group affects water structure significantly. The hydration of polysaccharides is less apparent than that of monosaccharides, and it depends on the type of glycosidic bonds.


Subject(s)
Carbohydrates/chemistry , Terahertz Spectroscopy/methods , Water/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Structure
11.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681747

ABSTRACT

Hydration plays a fundamental role in DNA structure and functioning. However, the hydration shell has been studied only up to the scale of 10-20 water molecules per nucleotide. In the current work, hydration shells of DNA were studied in a solution by terahertz time-domain spectroscopy. The THz spectra of three DNA solutions (in water, 40 mm MgCl2 and 150 mM KCl) were transformed using an effective medium model to obtain dielectric permittivities of the water phase of solutions. Then, the parameters of two relaxation bands related to bound and free water molecules, as well as to intermolecular oscillations, were calculated. The hydration shells of DNA differ from undisturbed water by the presence of strongly bound water molecules, a higher number of free molecules and an increased number of hydrogen bonds. The presence of 40 mM MgCl2 in the solution almost does not alter the hydration shell parameters. At the same time, 150 mM KCl significantly attenuates all the found effects of hydration. Different effects of salts on hydration cannot be explained by the difference in ionic strength of solutions, they should be attributed to the specific action of Mg2+ and K+ ions. The obtained results significantly expand the existing knowledge about DNA hydration and demonstrate a high potential for using the THz time-domain spectroscopy method.


Subject(s)
DNA/chemistry , Terahertz Spectroscopy/methods , Cations/chemistry , Hydrogen Bonding , Magnesium/chemistry , Magnesium Chloride/chemistry , Plasmids/genetics , Potassium/chemistry , Solutions/chemistry , Water/chemistry
12.
Pathogens ; 10(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684285

ABSTRACT

Fusarium and late blight (fungal diseases of cereals and potatoes) are among the main causes of crop loss worldwide. A key element of success in the fight against phytopathogens is the timely identification of infected plants and seeds. That is why the development of new methods for identifying phytopathogens is a priority for agriculture. The terahertz time-domain spectroscopy (THz-TDS) is a promising method for assessing the quality of materials. For the first time, we used THz-TDS for assessing the infection of seeds of cereals (oats, wheat and barley) with fusarium and potato tubers of different varieties (Nadezhda and Meteor) with late blight. We evaluated the refractive index, absorption coefficient and complex dielectric permittivity in healthy and infected plants. The presence of phytopathogens on seeds was confirmed by microscopy and PCR. It is shown, that Late blight significantly affected all the studied spectral characteristics. The nature of the changes depended on the variety of the analyzed plants and the localization of the analyzed tissue relative to the focus of infection. Fusarium also significantly affected all the studied spectral characteristics. It was found that THz-TDS method allows you to clearly establish the presence or absence of a phytopathogens, in the case of late blight, to assess the degree and depth of damage to plant tissues.

13.
Chem Biol Interact ; 349: 109678, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34600868

ABSTRACT

The present study describes the synthesis of pyridinium derivatives of betulin, including new 4-methyl- and 3,5-methyl-pyridinium analogs, their effect on artificial membrane systems (liposomes), cytotoxicity in models of prokaryotic (E. coli K-12 MG1655) and eukaryotic cells (rat thymocytes), as well as their effect on the functioning of membrane systems of rat liver mitochondria. We have shown that the presence of methyl groups in the pyridine ring of compounds determines the ability of the derivatives to effectively permeabilize the artificial membrane of lecithin liposomes for the fluorescent probe sulforhodamine B. The 4-methyl- and 3,5-methyl-pyridinium analogs inhibit the growth of E. coli K-12 MG1655 and, at the same time, did not have a cytotoxic effect on rat thymocytes. However, in the latter case, we noted a decrease in the mitochondrial potential of cells. The studied compounds reduced the functional activity of mitochondria, suppressing the activity of complexes of the respiratory chain and reducing the membrane potential. In addition, compounds containing methyl groups in the p- and m-positions of the pyridine ring were also able to permeabilize the inner membrane of mitochondria, causing them to swell. In this case, the most lipophilic compound containing two methyl substituents at the m-position of the pyridine fragment was most effective and had a protonophore effect on mitochondria. The paper discusses the dependence of the membranotropic and biological actions of the quaternized pyridine derivatives of betulin on their structure and lipophilicity.


Subject(s)
Liposomes , Mitochondria, Liver/metabolism , Pyridines/chemistry , Triterpenes/chemistry , Spectrum Analysis/methods , Triterpenes/chemical synthesis
14.
Appl Spectrosc ; 75(12): 1510-1515, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34469187

ABSTRACT

Studying dielectric properties of heterogeneous systems is challenged by a problem of uncertainty of the ratio between dielectric permittivity of the system and dielectric permittivities of its components. Such ratios can be obtained in some cases using theoretical effective medium models. However, such models have not yet been developed for all the systems possible. Particularly, there is no effective medium model with filamentary inclusions. Such a theoretical model elaborated based on the fundamental principles of electrodynamics of continuous media is suggested in the present work. Any point of a filamentary inclusion with a length that is significantly greater than the thickness can be regarded as being located in a long cylinder-like fragment of the inclusion with stochastic direction of the cylinder axis relative to the external electric field. With this regard, electric field strength and electric induction values were averaged across the entire volume of a two-phase dielectric material. As a result, a model linking the dielectric permittivity of the two-phase system and the dielectric permittivities of both phases was elaborated. The model appears to be highly relevant for studying solutions of biopolymers, such as nucleic acids, fibrillar proteins and protein aggregates, polysaccharides, by means of electrical impedance spectroscopy, dielectric spectroscopy, and terahertz time-domain spectroscopy. The suggested theoretical model was successfully validated on a DNA solution within the terahertz region.


Subject(s)
Terahertz Spectroscopy , Biopolymers , Models, Theoretical , Proteins
15.
Polymers (Basel) ; 13(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34451175

ABSTRACT

In photoluminescence spectroscopy experiments, the interaction mode of the polymer membrane Nafion with various amino-acids was studied. The experiments were performed with physiological NaCl solutions prepared in an ordinary water (the deuterium content is 157 ± 1 ppm) and also in deuterium-depleted water (the deuterium content is ≤1 ppm). These studies were motivated by the fact that when Nafion swells in ordinary water, the polymer fibers are effectively "unwound" into the liquid bulk, while in the case of deuterium-depleted water, the unwinding effect is missing. In addition, polymer fibers, unwound into the liquid bulk, are similar to the extracellular matrix (glycocalyx) on the cell membrane surface. It is of interest to clarify the role of unwound fibers in the interaction of amino-acids with the polymer membrane surface. It turned out that the interaction of amino-acids with the membrane surface gives rise to the effects of quenching luminescence from the luminescence centers. We first observed various dynamic regimes arising upon swelling the Nafion membrane in amino-acid suspension with various isotopic content, including triggering effects, which is similar to the processes in the logical gates of computers.

16.
Int J Mol Sci ; 22(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800175

ABSTRACT

Using a number of optical techniques (interferometry, dynamic light scattering, and spectroscopy), denaturation of hen egg white lysozyme (HEWL) by treatment with a combination of dithiothreitol (DTT) and guanidine hydrochloride (GdnHCl) has been investigated. The denaturing solutions were selected so that protein denaturation occurred with aggregation (Tris-HCl pH = 8.0, 50 mM, DTT 30 mM) or without aggregation (Tris-HCl pH = 8.0, 50 mM, DTT 30 mM, GdnHCl 6 M) and can be evaluated after 60 min of treatment. It has been found that denatured by solution with 6 M GdnHCl lysozyme completely loses its enzymatic activity after 30 min and the size of the protein molecule increases by 1.5 times, from 3.8 nm to 5.7 nm. Denaturation without of GdnHCl led to aggregation with preserving about 50% of its enzymatic activity. Denaturation of HEWL was examined using interferometry. Previously, it has been shown that protein denaturation that occurs without subsequent aggregation leads to an increase in the refractive index (Δn ~ 4.5 × 10-5). This is most likely due to variations in the HEWL-solvent interface area. By applying modern optical techniques conjointly, it has been possible to obtain information on the nature of time-dependent changes that occur inside a protein and its hydration shell as it undergoes denaturation.


Subject(s)
Chickens , Dithiothreitol/chemistry , Guanidine/chemistry , Muramidase/chemistry , Protein Aggregates , Protein Unfolding , Animals , Spectrophotometry, Ultraviolet
17.
Front Chem ; 9: 630074, 2021.
Article in English | MEDLINE | ID: mdl-33869139

ABSTRACT

The dependence of the volume number density of ion-stabilized gas nanobubbles (bubstons) on the type of gas and the pressure created by this gas in deionized water and saline solution has been investigated. The range of external pressures from the saturated water vapor (17 Torr) to 5 atm was studied. It turned out that the growth rate of the volume number density of bubstons is controlled by the magnitude of the molecular polarizability of dissolved gases. The highest densities of bubstons were obtained for gases whose molecules have a dipole moment. At fixed external pressure and the polarizability of gas molecules, the addition of external ions leads to a sharp increase in the content of bubstons.

18.
J Phys Chem B ; 125(17): 4375-4382, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33882673

ABSTRACT

ATP is one of the main biological molecules. Many of its biological and physicochemical properties, such as energy capacity of the phosphate bonds, significantly depend on hydration. However, the structure of the hydration shell of the ATP molecule is still a matter of discussion. In this work, the hydration shells of ATP in water and MgCl2 solutions were examined by terahertz time-domain spectroscopy and dynamic light scattering. Terahertz spectroscopy reveals the distorted water structure in the ATP water solution displaying tightly bound water molecules, which could be explained by the hydration of phosphate groups. Upon ATP binding to a Mg2+ ion, the situation is principally different: Instead of the distorted water structure, its arranged structure with increased hydrogen bond number is observed. Dynamic light scattering showed that the hydrodynamic diameter of ATP increases by 0.5 nm after Mg2+ binding. Meanwhile, according the characteristics of scattering, the increase of the shell size occurs via formation of a layer with a refraction coefficient similar to water. This layer can be interpreted as hydration shell differing from unaltered water by increased number of hydrogen bonds.


Subject(s)
Terahertz Spectroscopy , Adenosine Triphosphate , Dynamic Light Scattering , Hydrogen Bonding , Water
19.
Free Radic Biol Med ; 168: 55-69, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33812008

ABSTRACT

The paper examines the molecular mechanisms of the cytotoxicity of conjugates of betulinic acid with the penetrating cation F16. The in vitro experiments on rat thymocytes revealed that all the obtained F16-betulinic acid derivatives showed more than 10-fold higher cytotoxicity as compared to betulinic acid and F16. In this case, 0.5-1 µM of all conjugates showed mitochondria-targeted action, inducing superoxide overproduction and reducing the mitochondrial potential of cells. Experiments on isolated rat liver mitochondria revealed the ability of conjugates to dose-dependently reduce the membrane potential of organelles, as well as the intensity of respiration and oxidative phosphorylation, which is also accompanied by an increase in the production of hydrogen peroxide by mitochondria. It was shown that these actions of derivatives may be due to several effects: the reversion of ATP synthase, changes in the activity of complexes of the respiratory chain and permeabilization of the inner mitochondrial membrane. All compounds also demonstrated the ability to induce aggregation of isolated rat liver mitochondria. Using the model of lecithin liposomes, we found that the F6 conjugate (2 µM) induces the permeability of vesicle membranes for the fluorescent probe sulforhodamine B. High concentrations (25 µM) of the F6 derivative have been found to induce dynamic processes in the liposome membrane leading to aggregation and/or fusion of vesicle membranes. The paper discusses the relationship between the mitochondria-targeted effects of F16-betulinic acid conjugates and their cytotoxicity.


Subject(s)
Mitochondria , Triterpenes , Animals , Cations/metabolism , Mitochondria, Liver/metabolism , Pentacyclic Triterpenes , Rats , Reactive Oxygen Species/metabolism , Triterpenes/metabolism , Betulinic Acid
20.
Int J Mol Sci ; 22(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450960

ABSTRACT

This work investigated in vitro aggregation and amyloid properties of skeletal myosin binding protein-C (sMyBP-C) interacting in vivo with proteins of thick and thin filaments in the sarcomeric A-disc. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) found a rapid (5-10 min) formation of large (>2 µm) aggregates. sMyBP-C oligomers formed both at the initial 5-10 min and after 16 h of aggregation. Small angle X-ray scattering (SAXS) and DLS revealed sMyBP-C oligomers to consist of 7-10 monomers. TEM and atomic force microscopy (AFM) showed sMyBP-C to form amorphous aggregates (and, to a lesser degree, fibrillar structures) exhibiting no toxicity on cell culture. X-ray diffraction of sMyBP-C aggregates registered reflections attributed to a cross-ß quaternary structure. Circular dichroism (CD) showed the formation of the amyloid-like structure to occur without changes in the sMyBP-C secondary structure. The obtained results indicating a high in vitro aggregability of sMyBP-C are, apparently, a consequence of structural features of the domain organization of proteins of this family. Formation of pathological amyloid or amyloid-like sMyBP-C aggregates in vivo is little probable due to amino-acid sequence low identity (<26%), alternating ordered/disordered regions in the protein molecule, and S-S bonds providing for general stability.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Protein Aggregates , Amino Acid Sequence , Amyloid/ultrastructure , Chromatography, High Pressure Liquid , Circular Dichroism , Dynamic Light Scattering , In Vitro Techniques , Kinetics , Mass Spectrometry , Models, Molecular , Protein Aggregation, Pathological , Protein Conformation , Structure-Activity Relationship , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...