Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(13): 5952-5962, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38506754

ABSTRACT

The presence of oxyanions, such as nitrate (NO3-) and phosphate (PO43-), regulates the nucleation and growth of goethite (Gt) and hematite (Hm) during the transformation of ferrihydrite (Fh). Our previous studies showed that oxyanion surface complexes control the rate and pathway of Fh transformation to Gt and Hm. However, how oxyanion surface complexes control the mechanism of Gt and Hm nucleation and growth during the Fh transformation is still unclear. We used synchrotron scattering methods and cryogenic transmission electron microscopy to investigate the effects of NO3- outer-sphere complexes and PO43- inner-sphere complexes on the mechanism of Gt and Hm formation from Fh. Our TEM results indicated that Gt particles form through a two-step model in which Fh particles first transform to Gt nanoparticles and then crystallographically align and grow to larger particles by oriented attachment (OA). In contrast, for the formation of Hm, imaging shows that Fh particles first aggregate and then transform to Hm through interface nucleation. This is consistent with our X-ray scattering results, which demonstrate that NO3- outer-sphere and PO43- inner-sphere complexes promote the formation of Gt and Hm, respectively. These results have implications for understanding the coupled interactions of oxyanions and iron oxy-hydroxides in Earth-surface environments.


Subject(s)
Ferric Compounds , Iron Compounds , Minerals , Adsorption
2.
Sci Total Environ ; 890: 164313, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37211112

ABSTRACT

Plastic pollution is a major threat facing our environment. To understand the full effects, we must first characterize how plastics break down in environmental systems. Heretofore, there has been little work examining how exposure to sewage sludge facilitates the degradation of plastics, particularly of plastics that have been previously weathered. Herein, we characterize how the crystallinity, surface chemistry, and morphology of polylactic acid (PLA) and polyethylene (PE) films change due to sludge exposure. In this work, sludge-induced changes in carbonyl index were found to depend on the level of prior exposure to ultraviolet (UV) irradiation. The carbonyl indices of un-irradiated films increased while those of UV-aged films decreased after 35 days of sludge exposure. In addition, the carbon­oxygen and hydroxyl bond indices of PE films increased with sludge exposure, suggesting the surface oxidation of PE. As for PLA, crystallinity was found to increase with sludge exposure, consistent with a chain scission mechanism. This work will help to predict the behavior of plastic films after transfer from wastewater to sewage sludge.


Subject(s)
Polyethylene , Sewage , Sewage/chemistry , Polyesters , Plastics
3.
ACS Appl Mater Interfaces ; 13(27): 32126-32135, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34213325

ABSTRACT

Metal-ceramic nanocomposites exhibit exceptional mechanical properties with a combination of high strength, toughness, and hardness that are not achievable in monolithic metals or ceramics, which make them valuable for applications in fields such as the aerospace and automotive industries. In this study, interpenetrating nanocomposites of three-dimensionally ordered macroporous (3DOM) tungsten-silicon oxycarbide (W-SiOC) were prepared, and their mechanical properties were investigated. In these nanocomposites, the crystalline tungsten and amorphous silicon oxycarbide phases both form continuous and interpenetrating networks, with some discrete free carbon nanodomains. The W-SiOC material inherits the periodic structure from its 3DOM W matrix, and this periodic structure can be maintained up to 1000 °C. In situ SEM micropillar compression tests demonstrated that the 3DOM W-SiOC material could sustain a maximum average stress of 1.1 GPa, a factor of 22 greater than that of the 3DOM W matrix, resulting in a specific strength of 640 MPa/(Mg/m3) at 30 °C. Deformation behavior of the developed 3DOM nanocomposite in a wide temperature range (30-575 °C) was investigated. The deformation mode of 3DOM W-SiOC exhibited a transition from fracture-dominated deformation at low temperatures to plastic deformation above 425 °C.

4.
Langmuir ; 37(27): 8115-8128, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34191521

ABSTRACT

Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and toxicity of commercial dispersants have led to the development of "greener" dispersants consisting solely of food-grade surfactants such as l-α-phosphatidylcholine (lecithin, L) and polyoxyethylenated sorbitan monooleate (Tween 80, T). Individually, neither L nor T is effective at dispersing crude oil, but mixtures of the two (LT blends) work synergistically to ensure effective dispersion. The reasons for this synergy remain unexplained. More broadly, an unresolved challenge is to be able to predict whether a given surfactant (or a blend) can serve as an effective dispersant. Herein, we investigate whether the LT dispersant effectiveness can be correlated with thermodynamic phase behavior in model systems. Specifically, we study ternary "DOW" systems comprising LT dispersant (D) + a model oil (hexadecane, O) + synthetic seawater (W), with the D formulation being systematically varied (across 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 L:T weight ratios). We find that the most effective LT dispersants (60:40 and 80:20 L:T) induce broad Winsor III microemulsion regions in the DOW phase diagrams (Winsor III implies that the microemulsion coexists with aqueous and oil phases). This correlation is generally consistent with expectations from hydrophilic-lipophilic deviation (HLD) calculations, but specific exceptions are seen. This study then outlines a protocol that allows the phase behavior to be observed on short time scales (ca. hours) and provides a set of guidelines to interpret the results. The complementary use of HLD calculations and the outlined fast protocol are expected to be used as a predictive model for effective dispersant blends, providing a tool to guide the efficient formulation of future marine oil dispersants.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Lecithins , Petroleum Pollution/analysis , Polysorbates , Surface-Active Agents , Water Pollutants, Chemical/analysis
6.
ACS Appl Mater Interfaces ; 12(44): 49971-49981, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33079519

ABSTRACT

Metal-organic framework (MOF) materials have shown promise in many applications, ranging from gas storage to absorption and catalysis. Because of the high porosity and low density of many MOFs, densification methods such as pelletization and extrusion are needed for practical use and for commercialization of MOF materials. Therefore, it is important to elucidate the mechanical properties of MOFs and to develop methods of further enhancing their mechanical strength. Here, we demonstrate the influence of phase purity and the presence of a pore-reinforcing component on elastic modulus and yield stress of NU-1000 MOFs through nanoindentation methods and finite element simulation. Three types of NU-1000 single crystals were compared: phase-pure NU-1000 prepared with biphenyl-4-carboxylic acid as a modulator (NU-1000-bip), NU-1000 prepared with benzoic acid as a modulator (NU-1000-ben), which results in an additional, denser impurity phase of NU-901, and NU-1000-bip whose mesopores were infiltrated with silica (SiOx(OH)y@NU-1000) by nanocasting methods. By maintaining phase purity and minimizing defects, the elastic modulus could be enhanced by nearly an order of magnitude: phase-pure NU-1000-bip crystals exhibited an elastic modulus of 21 GPa, whereas the value for NU-1000-ben crystals was only 3 GPa. The introduction of silica into the mesopores of NU-1000-bip did not strongly affect the measured elastic modulus (19 GPa) but significantly increased the load at failure from 2000 µN to 3000-4000 µN.

7.
ACS Omega ; 5(11): 6069-6073, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32226889

ABSTRACT

Capping agents play an important role in the synthesis of silver nanostructures in polyol solvents. In this work, we demonstrate that using a small amount of tannic acid (TA), a reducing capping agent, in addition to poly(vinylpyrrolidone) (PVP), a protective capping agent, can lead to the production of monodisperse spherical silver nanoparticles (Ag NPs) that are stable with respect to particle aggregation for at least 100 days and have particle sizes ranging from 16 to 28 nm depending on the TA concentration. We hypothesize that the complexation between PVP and TA can lead to the formation of a stable particle coating and a fast Ag+ reduction rate at a relatively high TA concentration. Both effects can benefit the formation of small spherical Ag NPs with narrow size distribution.

8.
J Am Chem Soc ; 142(1): 242-250, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31851505

ABSTRACT

The postmodification of metal organic frameworks (MOFs) affords exceedingly high surface area materials with precisely installed chemical features, which provide new opportunities for detailed structure-function correlation in the field of catalysis. Here, we significantly expand upon the number of vapor-phase postmodification processes reported to date through screening a library of atomic layer deposition (ALD) precursors, which span metals across the periodic table and which include ligands from four distinct precursor classes. With a large library of precursors and synthesis conditions, we discern trends in the compatibility of precursor classes for well-behaved ALD in MOFs (AIM) and identify challenges and solutions to more precise postsynthetic modification.


Subject(s)
Gases/chemistry , Metal-Organic Frameworks/chemistry , Catalysis , Structure-Activity Relationship
9.
J Am Chem Soc ; 141(23): 9292-9304, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31117650

ABSTRACT

Mononuclear and dinuclear copper species were synthesized at the nodes of an NU-1000 metal-organic framework (MOF) via cation exchange and subsequent oxidation at 200 °C in oxygen. Copper-exchanged MOFs are active for selectively converting methane to methanol at 150-200 °C. At 150 °C and 1 bar methane, approximately a third of the copper centers are involved in converting methane to methanol. Methanol productivity increased by 3-4-fold and selectivity increased from 70% to 90% by increasing the methane pressure from 1 to 40 bar. Density functional theory showed that reaction pathways on various copper sites are able to convert methane to methanol, the copper oxyl sites with much lower free energies of activation. Combining studies of the stoichiometric activity with characterization by in situ X-ray absorption spectroscopy and density functional theory, we conclude that dehydrated dinuclear copper oxyl sites formed after activation at 200 °C are responsible for the activity.

10.
J Am Chem Soc ; 140(45): 15309-15318, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30352506

ABSTRACT

Promoters are ubiquitous in industrial heterogeneous catalysts. The wider roles of promoters in accelerating catalysis and/or controlling selectivity are, however, not well understood. A model system has been developed where a heterobimetallic active site comprising an active metal (Rh) and a promoter ion (Ga) is preassembled and delivered onto a metal-organic framework (MOF) support, NU-1000. The Rh-Ga sites in NU-1000 selectively catalyze the hydrogenation of acyclic alkynes to E-alkenes. The overall stereoselectivity is complementary to the well-known Lindlar's catalyst, which generates Z-alkenes. The role of the Ga in promoting this unusual selectivity is evidenced by the lack of semihydrogenation selectivity when Ga is absent and only Rh is present in the active site.

11.
Inorg Chem ; 57(5): 2782-2790, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29461822

ABSTRACT

Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-postmetalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.

12.
Angew Chem Int Ed Engl ; 57(4): 909-913, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29205697

ABSTRACT

Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

13.
ACS Appl Mater Interfaces ; 9(45): 39342-39346, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29090902

ABSTRACT

NU-1000 is a robust, mesoporous metal-organic framework (MOF) with hexazirconium nodes ([Zr6O16H16]8+, referred to as oxo-Zr6 nodes) that can be synthesized by combining a solution of ZrOCl2·8H2O and a benzoic acid modulator in N,N-dimethylformamide with a solution of linker (1,3,6,8-tetrakis(p-benzoic acid)pyrene, referred to as H4TBAPy) and by aging at an elevated temperature. Typically, the resulting crystals are primarily composed of NU-1000 domains that crystallize with a more dense phase that shares structural similarity with NU-901, which is an MOF composed of the same linker molecules and nodes. Density differences between the two polymorphs arise from the differences in the node orientation: in NU-1000, the oxo-Zr6 nodes rotate 120° from node to node, whereas in NU-901, all nodes are aligned in parallel. Considering this structural difference leads to the hypothesis that changing the modulator from benzoic acid to a larger and more rigid biphenyl-4-carboxylic acid might lead to a stronger steric interaction between the modulator coordinating on the oxo-Zr6 node and misaligned nodes or linkers in the large pore and inhibit the growth of the more dense NU-901-like material, resulting in phase-pure NU-1000. Side-by-side reactions comparing the products of synthesis using benzoic acid or biphenyl-4-carboxylic acid as a modulator produce structurally heterogeneous crystals and phase-pure NU-1000 crystals. It can be concluded that the larger and more rigid biphenyl-4-carboxylate inhibits the incorporation of nodes with an alignment parallel to the neighboring nodes already residing in the crystal.

14.
Faraday Discuss ; 201: 287-302, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28631795

ABSTRACT

NU-1000, a mesoporous metal-organic framework (MOF) featuring hexazirconium oxide nodes and 3 nm wide channels, was infiltrated with a reactive dicobalt complex to install dicobalt active sites onto the MOF nodes. The anchoring of the dicobalt complex onto NU-1000 occurred with a nearly ideal stoichiometry of one bimetallic complex per node and with the cobalt evenly distributed throughout the MOF particle. To access thermally robust multimetallic sites on an all-inorganic support, the modified NU-1000 materials containing either the dicobalt complex, or an analogous cobalt-aluminum species, were nanocast with silica. The resulting materials feature Co2 or Co-Al bimetallated hexazirconium oxide clusters within a silica matrix. The cobalt-containing materials are competent catalysts for the selective oxidation of benzyl alcohol to benzaldehyde. Catalytic activity depends on the number of cobalt ions per node, but does not vary significantly between the NU-1000 and silica supports. Hence, the multimetallic oxide clusters remain site-isolated and substrate-accessible within the nanocast materials.

15.
J Chem Educ ; 94(7): 941-945, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-34483361

ABSTRACT

Proteins are involved in nearly every biological process, which makes them of interest to a range of scientists. Previous work has shown that hand-held cameras can be used to determine the concentration of colored analytes in solution, and this paper extends the approach to reactions involving a color change in order to quantify protein concentration (e.g., green to blue). Herein, we describe the successful use of smartphone colorimetry to quantify protein concentration using two common colorimetric biochemical methods, the Bradford and biuret assays. The ease of the experimental setup makes these lab experiments accessible to a wide range of students and can be used as both high school and college level laboratory experiments.

16.
Environ Sci Technol ; 50(19): 10406-10412, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27631570

ABSTRACT

Nitroaromatic compounds are groundwater pollutants that can be degraded through reactions with Fe(II) adsorbed on iron oxide nanoparticles, although little is known about the evolving reactivity of the minerals with continuous pollutant exposure. In this work, Fe(II)/goethite reactivity toward 4-chloronitrobenzene (4-ClNB) as a function of pH, organic matter presence, and reactant concentrations was explored using sequential-spike batch reactors. Reaction rate constants were smaller with lower pH, introduction of organic matter, and diluted reactant concentrations as compared to a reference condition. Reaction rate constants did not change with the number of 4-ClNB spikes for all reaction conditions. Under all conditions, oxidative goethite growth was demonstrated through X-ray diffraction, magnetic characterization, and transmission electron microscopy. Nonparametric statistics were applied to compare histograms of lengths and widths of goethite nanoparticles as a function of varied solution conditions. The conditions that slowed the reaction also resulted in statistically shorter and wider particles than for the faster reactions. Additionally, added organic matter interfered with particle growth on the favorable {021} faces to a greater extent, with statistically reduced rate of growth on the tip facets and increased rate of growth on the side facets. These data demonstrate that oxidative growth of goethite in aqueous systems is dependent on major groundwater variables, such as pH and the presence of organic matter, which could lead to the evolving reactivity of goethite particles in natural environments.


Subject(s)
Iron Compounds/chemistry , Iron/chemistry , Hydrogen-Ion Concentration , Minerals/chemistry , Oxidation-Reduction , Water/chemistry , X-Ray Diffraction
17.
J Am Chem Soc ; 138(8): 2739-48, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26848741

ABSTRACT

Metal-organic frameworks (MOFs) provide convenient systems for organizing high concentrations of single catalytic sites derived from metallic or oxo-metallic nodes. However, high-temperature processes cause agglomeration of these nodes, so that the single-site character and catalytic activity are lost. In this work, we present a simple nanocasting approach to provide a thermally stable secondary scaffold for MOF-based catalytic single sites, preventing their aggregation even after exposure to air at 600 °C. We describe the nanocasting of NU-1000, a MOF with 3 nm channels and Lewis-acidic oxozirconium clusters, with silica. By condensing tetramethylorthosilicate within the NU-1000 pores via a vapor-phase HCl treatment, a silica layer is created on the inner walls of NU-1000. This silica layer provides anchoring sites for the oxozirconium clusters in NU-1000 after the organic linkers are removed at high temperatures. Differential pair distribution functions obtained from synchrotron X-ray scattering confirmed that isolated oxozirconium clusters are maintained in the heated nanocast materials. Pyridine adsorption experiments and a glucose isomerization reaction demonstrate that the clusters remain accessible to reagents and maintain their acidic character and catalytic activity even after the nanocast materials have been heated to 500-600 °C in air. Density functional theory calculations show a correlation between the Lewis acidity of the oxozirconium clusters and their catalytic activity. The ability to produce MOF-derived materials that retain their catalytic properties after exposure to high temperatures makes nanocasting a useful technique for obtaining single-site catalysts suitable for high-temperature reactions.

18.
Environ Sci Technol ; 50(3): 1200-8, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26790005

ABSTRACT

Natural organic matter (NOM) is ubiquitous in surface water and groundwater and interacts strongly with mineral surfaces. The details of these interactions, as well as their impacts on mineral surface reactivity, are not well understood. In this work, both the reactivity and aggregation of goethite (α-FeOOH) nanoparticles were quantified in the presence of well-characterized humic substances. Results from monitoring the kinetics of reductive degradation of 4-chloronitrobenzene (4-ClNB) by Fe(II) adsorbed onto the goethite nanoparticles with and without added humic substances demonstrates that, in all cases, humic substances suppressed Fe(II)-goethite reactivity. The ranking of the standards from the least to most inhibitive was Pahokee Peat humic acid, Elliot Soil humic acid, Suwannee River humic acid, Suwannee River NOM, Suwannee River fulvic acid I, Suwannee River fulvic acid II, and Pahokee Peat fulvic acid. Correlations between eight characteristics (molecular weight, carboxyl concentration, and carbon, oxygen, nitrogen, aliphatic, heteroaliphatic, and aromatic content) and 4-ClNB degradation rate constants were observed. Faster kinetic rates of reductive degradation were observed with increased molecular weight and nitrogen, carbon, and aromatic content, and slower rates were observed with increased carboxyl concentration and oxygen, heteroaliphatic, and aliphatic content. With these correlations, improved predictions of the reactivity of Fe(II)-goethite with pollutants based on properties of the humic substances are possible.


Subject(s)
Humic Substances , Iron Compounds/chemistry , Minerals/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Benzopyrans/chemistry , Biodegradation, Environmental , Carbon/analysis , Humic Substances/analysis , Iron/chemistry , Kinetics , Molecular Weight , Nitrobenzenes/chemistry , Nitrogen/analysis , Oxygen/analysis , Principal Component Analysis , Water
19.
J Am Chem Soc ; 138(1): 191-8, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26710311

ABSTRACT

Self-assembly of ([UO2(O2)OH]60)(60-) (U60), an actinide polyoxometalate with fullerene topology, can be induced by the addition of mono- and divalent cations to aqueous U60 solutions. Dynamic light scattering and small-angle X-ray scattering lend important insights into assembly in this system, but direct imaging of U60 and its assemblies via transmission electron microscopy (TEM) has remained an elusive goal. In this work, we used cryogenic TEM to image U60 and secondary and tertiary assemblies of U60 to characterize the size, morphology, and rate of formation of the secondary and tertiary structures. The kinetics and final morphologies of the secondary and tertiary structures strongly depend on the cation employed, with monovalent cations (Na(+) and K(+)) leading to the highest rates and largest secondary and tertiary structures.

20.
ACS Nano ; 9(12): 12104-14, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26580413

ABSTRACT

Potentiometric sensors, such as polymeric membrane, ion-selective electrodes (ISEs), have been used in the past to monitor a variety of chemical processes. However, the use of these sensors has traditionally been limited to aqueous solutions and moderate temperatures. Here we present an ISE with a high-capacity ion-exchange sensing membrane for measurements of nitrate and nitrite in the organic solvent propylene glycol at 150 °C. It is capable of continuously measuring under these conditions for over 180 h. We demonstrate the usefulness of this sensor by in situ monitoring of anion concentrations during the synthesis of copper and silver nanoparticles in propylene glycol using the polyol method. Ion chromatography and a colorimetric method were used to independently confirm anion concentrations measured in situ. In doing so, it was shown that in this reaction the co-ion nitrate is reduced to nitrite.

SELECTION OF CITATIONS
SEARCH DETAIL
...