Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Conscious Cogn ; 119: 103668, 2024 03.
Article in English | MEDLINE | ID: mdl-38417198

ABSTRACT

How deep is the current diversity in the panoply of theories to define consciousness, and to what extent do these theories share common denominators? Here we first examine to what extent different theories are commensurable (or comparable) along particular dimensions. We posit logical (and, when applicable, empirical) commensurability as a necessary condition for identifying common denominators among different theories. By consequence, dimensions for inclusion in a set of logically and empirically commensurable theories of consciousness can be proposed. Next, we compare a limited subset of neuroscience-based theories in terms of commensurability. This analysis does not yield a denominator that might serve to define a minimally unifying model of consciousness. Theories that seem to be akin by one denominator can be remote by another. We suggest a methodology of comparing different theories via multiple probing questions, allowing to discern overall (dis)similarities between theories. Despite very different background definitions of consciousness, we conclude that, if attention is paid to the search for a common methological approach to brain-consciousness relationships, it should be possible in principle to overcome the current Babylonian confusion of tongues and eventually integrate and merge different theories.


Subject(s)
Consciousness , Neurosciences , Humans , Brain , Attention
2.
J Neurosci ; 2022 May 27.
Article in English | MEDLINE | ID: mdl-35641187

ABSTRACT

The posterior parietal cortex (PPC) plays a key role in integrating sensory inputs from different modalities to support adaptive behavior. Neuronal activity in PPC reflects perceptual decision making across behavioral tasks, but the mechanistic involvement of PPC is unclear. In an audiovisual change detection task, we tested the hypothesis that PPC is required to arbitrate between the noisy inputs from the two different modalities and help decide in which modality a sensory change occurred. In trained male mice, we found extensive single-neuron and population-level encoding of task-relevant visual and auditory stimuli, trial history, as well as upcoming behavioral responses. However, despite these rich neural correlates, which would theoretically be sufficient to solve the task, optogenetic inactivation of PPC did not affect visual or auditory performance. Thus, in spite of neural correlates faithfully tracking sensory variables and predicting behavioral responses, PPC was not relevant for audiovisual change detection. This functional dissociation questions the role of sensory- and task-related activity in parietal associative circuits during audiovisual change detection. Furthermore, our results highlight the necessity to dissociate functional correlates from mechanistic involvement when exploring the neural basis of perception and behavior.SIGNIFICANCE STATEMENTThe Posterior Parietal Cortex (PPC) is active during many daily tasks, but capturing its function has remained challenging. Specifically, it is proposed to function as an integration hub for multisensory inputs. Here, we tested the hypothesis that, rather than classical cue integration, mouse PPC is involved in the segregation and discrimination of sensory modalities. Surprisingly, even though neural activity tracked current and past sensory stimuli and reflected the ongoing decision-making process, optogenetic inactivation did not affect task performance. Thus, we show an apparent redundancy of sensory and task-related activity in mouse PPC. These results narrow down the function of parietal circuits, as well as direct the search for those neural dynamics that causally drive perceptual decision making.

3.
Trends Neurosci ; 34(10): 548-59, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21889806

ABSTRACT

The hippocampal formation and striatum subserve declarative and procedural memory, respectively. However, experimental evidence suggests that the ventral striatum, as opposed to the dorsal striatum, does not lend itself to being part of either system. Instead, it may constitute a system integrating inputs from the amygdala, prefrontal cortex and hippocampus to generate motivational, outcome-predicting signals that invigorate goal-directed behaviors. Inspired by reinforcement learning models, we suggest an alternative scheme for computational functions of the striatum. Dorsal and ventral striatum are proposed to compute outcome predictions largely in parallel, using different types of information as input. The nature of the inputs to striatum is furthermore combinatorial, and the specificity of predictions transcends the level of scalar value signals, incorporating episodic information.


Subject(s)
Corpus Striatum/physiology , Goals , Hippocampus/physiology , Learning/physiology , Spatial Behavior/physiology , Animals , Humans , Neural Pathways/physiology
4.
Neurobiol Learn Mem ; 93(3): 422-7, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20045076

ABSTRACT

In monkeys and rats, neural activity patterns during learning are reactivated during subsequent periods of rest or sleep. According to the reactivation-consolidation account, this process underlies the consolidation of memories. Brain imaging studies have extended these findings to humans during sleep, but not yet, during rest. Here, we show that learning-related reactivation also occurs in humans during rest. During functional MRI-scanning, participants trained on a perceptuomotor task flanked by rest periods. During training, we found robust activity in the superior parietal cortex. During post-training rest, this same area reactivated. We also found a link between parietal reactivation and learning. Activity in superior parietal cortex was associated with learning during training, and a control group that did not train on the perceptuomotor task did not show any difference between the pre- and post-training rest blocks in this region. These findings indicate that, during rest, reactivation also occurs in humans. This process may contribute to consolidation of perceptuomotor memories.


Subject(s)
Consciousness/physiology , Learning , Motion Perception , Parietal Lobe/physiology , Adult , Animals , Female , Fixation, Ocular/physiology , Haplorhini , Humans , Magnetic Resonance Imaging , Male , Rats , Rest , Sleep , Young Adult
5.
Neuropsychologia ; 48(2): 491-7, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19835893

ABSTRACT

There is abundant evidence that the hippocampal formation critically supports episodic memory retrieval, the remembering of episodes including contextual details. Yet, a group of other brain regions has also been consistently implicated in successful episodic retrieval. This retrieval success network (RSN) includes the posterior midline region, medial prefrontal cortex (mPFC), and posterior parietal cortex (PPC). Despite these consistent findings, the functional roles of the RSN regions remain poorly understood. Given that vivid remembering leads to high-confidence retrieval decisions, it is unclear whether activity in these regions reflects episodic long-term memory, or is merely associated with retrieval confidence. In order to distinguish between these alternatives, we manipulated study-test delays within the context of a continuous recognition task during fMRI-scanning. The design was based on previous evidence indicating that retrieval at short delays is easier leading to high-evidence mnemonic decisions, whereas retrieval at longer delays is more difficult but also more hippocampus-dependent. Confirming previous findings, we found that retrieval decisions at short delays were more accurate and faster, and that the hippocampus showed greater activity at longer delays. Within the other RSN regions, we found three distinct activation patterns as a function of delay. Similar to the hippocampus, the retrosplenial cortex showed increased activity as a function of retrieval delay. Dorsal PPC and the precuneus showed decreased activity. Finally, the posterior cingulate, medial PFC and ventral PPC showed a V-shaped pattern. These findings support the idea that dorsal PPC and the precuneus are involved in decision-related retrieval processes rather than successful remembering.


Subject(s)
Brain Mapping , Cerebral Cortex/physiology , Mental Recall/physiology , Reaction Time/physiology , Recognition, Psychology/physiology , Analysis of Variance , Cerebral Cortex/blood supply , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Neuropsychological Tests , Oxygen/blood , Verbal Behavior/physiology , Vocabulary , Young Adult
6.
Psychopharmacology (Berl) ; 198(1): 113-26, 2008 May.
Article in English | MEDLINE | ID: mdl-18347780

ABSTRACT

RATIONALE: Repeated exposure to psychostimulant drugs causes a long-lasting increase in the psychomotor and reinforcing effects of these drugs and an array of neuroadaptations. One such alteration is a hypersensitivity of striatal activity such that a low dose of amphetamine in sensitized animals produces dorsal striatal activation patterns similar to acute treatment with a high dose of amphetamine. OBJECTIVES: To extend previous findings of striatal hypersensitivity with behavioral observations and with cellular activity in the nucleus accumbens and prefrontal cortex in sensitized animals. MATERIALS AND METHODS: Rats treated acutely with 0, 1, 2.5, or 5 mg/kg i.p. amphetamine and sensitized rats challenged with 1 mg/kg i.p. amphetamine were scored for stereotypy, rearing, and grooming, and locomotor activity recorded. c-fos positive nuclei were quantified in the nucleus accumbens and prefrontal cortex after expression of sensitization with 1 mg/kg i.p. amphetamine. RESULTS: Intense stereotypy was seen in animals treated acutely with 5 mg/kg amphetamine, but not in the sensitized group treated with 1 mg/kg amphetamine. The c-fos response to amphetamine in the accumbens core was augmented in amphetamine-pretreated animals with a shift in the distribution of optical density, while no effect of sensitization was seen in the nucleus accumbens shell or prefrontal cortex. CONCLUSIONS: A lack of stereotypy in the sensitized group indicates a dissociation of behavioral responses to amphetamine and striatal immediate-early gene activation patterns. The increase in c-fos positive nuclei and shift in the distribution of optical density observed in the nucleus accumbens core suggests recruitment of a new population of neurons during expression of sensitization.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , Neurons/drug effects , Nucleus Accumbens/cytology , Nucleus Accumbens/drug effects , Recruitment, Neurophysiological/drug effects , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Genes, fos/drug effects , Grooming/drug effects , Immunohistochemistry , Male , Motor Activity/drug effects , Prefrontal Cortex/cytology , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Stereotyped Behavior/drug effects
7.
J Pharmacol Exp Ther ; 323(1): 61-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17626795

ABSTRACT

To be able to address the question how neurotransmitters or pharmacological agents influence activity of neuronal populations in freely moving animals, the combidrive was developed. The combidrive combines an array of 12 tetrodes to perform ensemble recordings with a moveable and replaceable microdialysis probe to locally administer pharmacological agents. In this study, the effects of cumulative concentrations of tetrodotoxin, lidocaine, and muscimol on neuronal firing activity in the prefrontal cortex were examined and compared. These drugs are widely used in behavioral studies to transiently inactivate brain areas, but little is known about their effects on ensemble activity and the possible differences between them. The results show that the combidrive allows ensemble recordings simultaneously with reverse microdialysis in freely moving rats for periods at least up to 2 wk. All drugs reduced neuronal firing in a concentration dependent manner, but they differed in the extent to which firing activity of the population was decreased and the in speed and extent of recovery. At the highest concentration used, both muscimol and tetrodotoxin (TTX) caused an almost complete reduction of firing activity. Lidocaine showed the fastest recovery, but it resulted in a smaller reduction of firing activity of the population. From these results, it can be concluded that whenever during a behavioral experiment a longer lasting, reversible inactivation is required, muscimol is the drug of choice, because it inactivates neurons to a similar degree as TTX, but it does not, in contrast to TTX, affect fibers of passage. For a short-lasting but partial inactivation, lidocaine would be most suitable.


Subject(s)
Lidocaine , Microdialysis/methods , Muscimol , Neurons/physiology , Tetrodotoxin , Action Potentials/drug effects , Animals , Dose-Response Relationship, Drug , Lidocaine/administration & dosage , Lidocaine/pharmacology , Male , Microdialysis/instrumentation , Models, Animal , Muscimol/administration & dosage , Muscimol/pharmacology , Neurons/drug effects , Neurons/metabolism , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/physiology , Rats , Rats, Wistar , Tetrodotoxin/administration & dosage , Tetrodotoxin/pharmacology
8.
Eur Neuropsychopharmacol ; 17(8): 532-40, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17275266

ABSTRACT

Various processes might explain the progression from casual to compulsive drug use underlying the development of drug addiction. Two of these, accelerated stimulus-response (S-R) habit learning and augmented assignment of motivational value to reinforcers, could be mediated via neuroadaptations associated with long-lasting sensitization to psychostimulant drugs, i.e. augmented dopaminergic neurotransmission in the striatum. Here, we tested the hypothesis that both processes, which are often regarded as mutually exclusive alternatives, are present in amphetamine-sensitized rats. Amphetamine-sensitized rats showed increased responding for food under a random ratio schedule of reinforcement, indicating increased incentive motivational value of food. In addition, satiety-specific devaluation experiments under a random interval schedule of reinforcement showed that amphetamine-sensitized animals exhibit accelerated development of S-R habits. These data show that both habit formation and motivational value of reinforcers are augmented in amphetamine-sensitized rats, and suggest that the task demands determine which behavioral alteration is most prominently expressed.


Subject(s)
Amphetamine/administration & dosage , Amphetamine/pharmacology , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/pharmacology , Conditioning, Operant/drug effects , Habits , Reinforcement, Psychology , Animals , Food , Male , Rats , Rats, Wistar , Satiety Response/drug effects
9.
Neuroscience ; 136(4): 1049-71, 2005.
Article in English | MEDLINE | ID: mdl-16226842

ABSTRACT

The nucleus accumbens is thought to subserve different aspects of adaptive and emotional behaviors. The anatomical substrates for such actions are multiple, parallel ventral striatopallidal output circuits originating in the nucleus accumbens shell and core subregions. Several indirect ways of interaction between the two subregions and their associated circuitry have been proposed, in particular through striato-pallido-thalamic and dopaminergic pathways. In this study, using anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine as well as single-cell juxtacellular filling with neurobiotin, we investigated the intra-accumbens distribution of local axon collaterals for the identification of possible direct connections between the shell and core subregions. Our results show widespread intra-accumbens projection patterns, including reciprocal projections between specific parts of the shell and core. However, fibers originating in the core reach more distant areas of the shell, including the rostral pole (i.e. the calbindin-poor part of the shell anterior to the core) and striatal parts of the olfactory tubercle, than those arising in the shell and projecting to the core. The latter projections are more restricted to the border region between the shell and core. The density of the fiber labeling within both the shell and core was very similar. Moreover, specific intrinsic projections within shell and core were identified, including a relatively strong projection from the rostral pole to the rostral shell, reciprocal projections between the rostral and caudal shell, as well as projections within the core that have a caudal-to-rostral predominance. The results of the juxtacellular filling experiments show that medium-sized spiny projection neurons and medium-sized aspiny neurons (most likely fast-spiking) contribute to these intra-accumbens projections. While such neurons are GABAergic, the intrastriatal projection patterns indicate the existence of lateral inhibitory interactions within, as well as between, shell and core subregions of the nucleus accumbens.


Subject(s)
Brain Mapping , Nerve Net/anatomy & histology , Nucleus Accumbens/cytology , Action Potentials/physiology , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Dextrans/metabolism , Female , Histocytochemistry/methods , Iontophoresis/methods , Male , Models, Neurological , Nerve Net/metabolism , Neurons/classification , Neurons/physiology , Nucleus Accumbens/metabolism , Phytohemagglutinins/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar
10.
J Neurosci ; 24(29): 6446-56, 2004 Jul 21.
Article in English | MEDLINE | ID: mdl-15269254

ABSTRACT

Previously it has been shown that the hippocampus and neocortex can spontaneously reactivate ensemble activity patterns during post-behavioral sleep and rest periods. Here we examined whether such reactivation also occurs in a subcortical structure, the ventral striatum, which receives a direct input from the hippocampal formation and has been implicated in guidance of consummatory and conditioned behaviors. During a reward-searching task on a T-maze, flanked by sleep and rest periods, parallel recordings were made from ventral striatal ensembles while EEG signals were derived from the hippocampus. Statistical measures indicated a significant amount of reactivation in the ventral striatum. In line with hippocampal data, reactivation was especially prominent during post-behavioral slow-wave sleep, but unlike the hippocampus, no decay in pattern recurrence was visible in the ventral striatum across the first 40 min of post-behavioral rest. We next studied the relationship between ensemble firing patterns in ventral striatum and hippocampal ripples-sharp waves, which have been implicated in pattern replay. Firing rates were significantly modulated in close temporal association with hippocampal ripples in 25% of the units, showing a marked transient enhancement in the average response profile. Strikingly, ripple-modulated neurons in ventral striatum showed a clear reactivation, whereas nonmodulated cells did not. These data suggest, first, the occurrence of pattern replay in a subcortical structure implied in the processing and prediction of reward and, second, a functional linkage between ventral striatal reactivation and a specific type of high-frequency population activity associated with hippocampal replay.


Subject(s)
Basal Ganglia/physiology , Hippocampus/physiology , Sleep/physiology , Action Potentials , Animals , Behavior, Animal , Conditioning, Psychological , Electroencephalography , Male , Neurons/physiology , Rats , Rats, Inbred F344 , Reward
11.
Behav Brain Res ; 146(1-2): 65-75, 2003 Nov 30.
Article in English | MEDLINE | ID: mdl-14643460

ABSTRACT

The prefrontal cortex (PFC) is known to be involved in associative learning; however, its specific role in acquisition of cued classical conditioning has not yet been determined. Furthermore, the role of regional differences within the PFC in the acquisition of cued conditioning is not well described. These issues were addressed by exposing rats to either one or four sessions of a cued classical conditioning task, and subsequently examining c-fos immunoreactivity in various areas of the PFC. Differences in patterns of c-fos immunopositive nuclei were found when comparing the PFC areas examined. No significant differences were found between rats presented with a temporally contingent conditioned stimulus (CS) light and food (paired groups) and those presented with the same stimuli temporally non-contingently (unpaired groups). In lateral and orbital PFC, both the paired and unpaired groups showed more c-fos immunopositive nuclei than control groups exposed only to the behavioral setup (context exposed groups), and all groups showed a drop in c-fos immunopositive nuclei from session 1 to session 4. In dorsal medial PFC, no differences were seen between the paired, unpaired and context exposed groups. These groups did, however, differ from naive animals, an effect that was not seen in the ventral medial PFC. The results of this study do not support a role for the PFC in the acquisition of a cued classical conditioning task. The differences seen between paired, unpaired and context exposed groups in orbital and lateral PFC could be due to contextual conditioning or reward-related effects.


Subject(s)
Conditioning, Classical/physiology , Cues , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Analysis of Variance , Animals , Behavior, Animal , Cell Count , Immunohistochemistry , Male , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Rats , Rats, Wistar
13.
J Physiol ; 532(Pt 1): 181-94, 2001 Apr 01.
Article in English | MEDLINE | ID: mdl-11283234

ABSTRACT

Circadian oscillator mechanisms in the suprachiasmatic nucleus (SCN) can be reset by photic input, which is mediated by glutamatergic afferents originating in the retina. A key question is why light can only induce phase shifts of the biological clock during a restricted period of the circadian cycle, namely the subjective night. One of several possible mechanisms holds that glutamatergic transmission at retinosuprachiasmatic synapses would be altered, in particular the contribution of glutamate receptor subtypes to the postsynaptic response. By studying the contributions of NMDA and non-NMDA glutamate receptors to the retinal input to SCN in whole-cell patch-clamp recordings in acutely prepared slices, we tested the hypothesis that NMDA receptor current evoked by optic nerve activity is potentiated during the subjective night. During the day the NMDA component of the EPSC evoked by optic nerve stimulation was found less frequently and was significantly smaller in magnitude than during the night. In contrast, the non-NMDA component did not show a significant day-night difference. When the magnitude of the NMDA component was normalized to that of the non-NMDA component, the day-night difference was maintained, suggesting a selective potentiation of NMDA receptor conductance. In addition to contributing to electrically evoked EPSCs, the NMDA receptor was found to sustain a small, tonically active inward current during the night phase. No significant tonic contribution by NMDA receptors was detected during the day. These results suggest, first, a dual mode of NMDA receptor function in the SCN and, second, a clock-controlled type of receptor plasticity, which may gate the transfer of photic input to phase-shifting mechanisms operating at the level of molecular autoregulatory feedback loops.


Subject(s)
Biological Clocks/physiology , Circadian Rhythm/physiology , Excitatory Postsynaptic Potentials , Neurons/physiology , Optic Nerve/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Electric Stimulation , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , In Vitro Techniques , Light , Male , N-Methylaspartate/pharmacology , Optic Chiasm/physiology , Patch-Clamp Techniques , Quinoxalines/pharmacology , Rats , Rats, Wistar , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/metabolism , Suprachiasmatic Nucleus/cytology
16.
J Biol Rhythms ; 14(2): 126-30, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10194649

ABSTRACT

Three independent electrophysiological approaches in hypothalamic slices were used to test the hypothesis that gamma-amino butyric acid (GABA)A receptor activation excites suprachiasmatic nucleus (SCN) neurons during the subjective day, consistent with a recent report. First, multiple-unit recordings during either the subjective day or night showed that GABA or muscimol inhibited firing activity of the SCN population in a dose-dependent manner. Second, cell-attached recordings during the subjective day demonstrated an inhibitory effect of bath- or microapplied GABA on action currents of single SCN neurons. Third, gramicidin perforated-patch recordings showed that bicuculline increased the spontaneous firing rate during the subjective day. Therefore, electrophysiological data obtained by three different experimental methods provide evidence that GABA is inhibitory rather than excitatory during the subjective day.


Subject(s)
Circadian Rhythm/drug effects , Neurons/drug effects , Receptors, GABA-A/physiology , Suprachiasmatic Nucleus/drug effects , gamma-Aminobutyric Acid/pharmacology , Action Potentials/drug effects , Animals , Bicuculline/pharmacology , Cell Membrane Permeability/drug effects , Chlorides/metabolism , Dose-Response Relationship, Drug , Electrophysiology , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , GABA-A Receptor Agonists , GABA-A Receptor Antagonists , Gramicidin/pharmacology , In Vitro Techniques , Male , Muscimol/pharmacology , Neurons/cytology , Neurons/physiology , Picrotoxin/pharmacology , Rats , Rats, Inbred Strains , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/physiology
17.
Brain Res ; 815(1): 154-66, 1999 Jan 02.
Article in English | MEDLINE | ID: mdl-9974136

ABSTRACT

The suprachiasmatic nucleus is commonly considered to contain the main pacemaker of behavioral and hormonal circadian rhythms. Using whole-cell patch-clamp recordings, the membrane properties of suprachiasmatic nucleus neurons were investigated in order to get more insight in membrane physiological mechanisms underlying the circadian rhythm in firing activity. Circadian rhythmicity could not be detected either in spontaneous firing rate or in other membrane properties when whole-cell measurements were made following an initial phase shortly after membrane rupture. However, this apparent lack of rhythmicity was not due to an unhealthy slice preparation or to seal formation, as a clear day/night difference in firing rate was found in cell-attached recordings. Furthermore, in a subsequent series of whole-cell recordings, membrane properties were assessed directly after membrane rupture, and in this series we did find a significant day/night difference in spontaneous firing rate, input resistance and frequency adaptation. As concerns the participation of different subpopulations of suprachiasmatic nucleus neurons expressing circadian rhythmicity, cluster I neurons exhibited strong rhythmicity, whereas no day/night differences were found in cluster II neurons. Vasopressin-containing cells form a subpopulation of cluster I neurons and showed a more pronounced circadian rhythmicity than the total population of cluster I neurons. In addition to their strong rhythm in spontaneous firing rate they also displayed a day/night difference in membrane potential.


Subject(s)
Circadian Rhythm/physiology , Patch-Clamp Techniques/standards , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/physiology , Action Potentials/physiology , Animals , Cell Membrane/physiology , Male , Neurons/chemistry , Neurons/physiology , Neurophysins/analysis , Organ Culture Techniques , Rats , Rats, Wistar , Time Factors , Vasopressins/analysis
18.
J Neurophysiol ; 80(5): 2710-7, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9819275

ABSTRACT

Vasopressin (VP) neurons in the suprachiasmatic nucleus (SCN) are thought to be closely linked to neural mechanisms for circadian timekeeping. To gain insight into the cellular-physiological principles that govern spike-driven VP release and to examine whether VP cells can be electrophysiologically and morphologically identified by a unique combination of features, we recorded membrane properties by whole cell patch-clamp methods and stained the cells with biocytin. In current-clamp mode, VP neurons recorded during subjective daytime expressed a clear time-dependent inward rectification but no pronounced low-threshold Ca2+ potential after hyperpolarizing current pulses. Their spontaneous firing rate varied between 0.6 and 13.4 Hz and was generally tonic and irregular. Spike afterhyperpolarizations (AHPs) were steeply rising and monophasic. Spikes were preceded by depolarizing ramps mediated by a slow component of Na+ current. Spike trains evoked by depolarizing current pulses displayed frequency adaptation and were usually followed by an AHP lasting 0.5-2.0 s. Spontaneous postsynaptic potentials were present in a majority of cells. Voltage-clamp recordings revealed a Ba2+-sensitive K+ current that exerts a tonic, hyperpolarizing influence on the membrane potential. This set of membrane properties was not significantly different from other cells in the dorsomedial region and is characteristic for cluster I cells, which were described previously and are widely encountered throughout the SCN. None of the cells could be classified as belonging to cluster II or III, which were indeed found mainly outside the dorsomedial region. Morphologically, single VP neurons were characterized by compact, mono- or bipolar dendritic branching patterns and numerous varicosities throughout the dendrites. They generally possessed few axon collaterals, most of which remained inside the boundaries of the SCN but were occasionally seen to project to SCN target areas. In conclusion, VP neurons in the SCN express several active membrane poperties, including time-dependent inward rectification, frequency adaptation in spike trains, monophasic spike AHPs, and Ba2+-sensitive K+ current. VP release is proposed to be governed by tonic and irregular patterns of spontaneous firing. The electrophysiological and cytological properties of VP neurons are representative for a majority of SCN cells and define them as a subset of previously defined cluster I cells.


Subject(s)
Neurons/cytology , Neurons/physiology , Suprachiasmatic Nucleus/cytology , Vasopressins/metabolism , Action Potentials/physiology , Animals , Barium/pharmacology , Cell Membrane/physiology , Circadian Rhythm , Electric Conductivity , Immunohistochemistry , In Vitro Techniques , Male , Neurons/metabolism , Neurons/ultrastructure , Patch-Clamp Techniques , Potassium/physiology , Rats , Rats, Wistar , Suprachiasmatic Nucleus/ultrastructure
19.
J Physiol ; 506 ( Pt 3): 775-93, 1998 Feb 01.
Article in English | MEDLINE | ID: mdl-9503337

ABSTRACT

1. Whole cell patch clamp recordings of neurons in slices of the suprachiasmatic nucleus (SCN) were made in order to assess their electrophysiological and morphological heterogeneity. This assessment was accomplished by (i) quantification of intrinsic membrane properties recorded in current clamp mode, (ii) studying frequency distributions of these properties, (iii) grouping of cells based on visual inspection of data records, and (iv) use of cluster analysis methods. 2. Marked heterogeneity was found in the resting membrane potential, input resistance, time constant, rate of frequency adaptation, size of rebound depolarization (low-threshold Ca2+ potential) and regularity of firing. The frequency distribution of these membrane properties deviated significantly from a normal distribution. Other parameters, including spike amplitude and width, amplitude and rising slope of the spike after-hyperpolarization (AHP) and amplitude of the spike train AHP, showed considerable variability as well but generally obeyed a normal distribution. 3. Visual inspection of the data led to partitioning of cells into three clusters, viz. cluster I characterized by monophasic spike AHPs and irregular firing in the frequency range from 1.5 to 5.0 Hz; cluster II with biphasic spike AHPs and regular firing in the same range; and cluster III with large rebound depolarizations and biphasic spike AHPs. In a post hoc analysis, these clusters also appeared to differ in other membrane properties. This grouping was confirmed by hierarchical tree clustering and multidimensional scaling. 4. The light microscopic properties of recorded neurons were studied by biocytin labelling. Neurons had monopolar, bipolar or multipolar branching patterns and were often varicose. Axons sometimes originated from distal dendritic segments and usually branched into multiple collaterals. Many cells with extra-SCN projections also possessed intranuclear axon collaterals. We found no morphological differences between clusters except that cluster III neurons possessed more axon collaterals than cluster I or II cells. 5. These results suggest that SCN neurons are heterogeneous in some basic as well as active membrane properties and can be partitioned into at least three clusters. Cluster I and II cells fire spontaneously in a regular and irregular mode, respectively, and sustain prolonged spike trains. In contrast, cluster III cells have low firing rates but may adopt a burst-like firing mode when receiving appropriate input. While all clusters transmit output to target cells within and outside SCN, cluster III cells in particular are suggested to affect excitability of large numbers of SCN neurons by their extensive local network of axon collaterals.


Subject(s)
Neurons/physiology , Suprachiasmatic Nucleus/physiology , Animals , Cluster Analysis , Electric Stimulation , Electrophysiology , Lysine/analogs & derivatives , Male , Membrane Potentials/physiology , Multivariate Analysis , Neurons/ultrastructure , Patch-Clamp Techniques , Rats , Rats, Wistar , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/ultrastructure
20.
J Neurophysiol ; 78(4): 1811-25, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9325350

ABSTRACT

Neurons constituting the pacemaker of circadian rhythms, located in the suprachiasmatic nucleus, generate spontaneous firing patterns that change across the day-night cycle. Their average spontaneous firing rate is considered an important functional marker of clock activity because it is highest during daytime and low at night. In this study we investigate the ionic mechanisms underlying spontaneous firing in acutely prepared slices and dissociated neurons of the suprachiasmatic nucleus. In current-clamp mode, spontaneous action potentials were consistently preceded by depolarizing ramps. These ramps were Na+ dependent, were sensitive to tetrodotoxin (TTX), and disappeared on hyperpolarization. Ramps and associated spikes were not abolished by blockers of the H current (1 mM cesium) or calcium currents (50 microM nickel or 200 microM cadmium). In voltage-clamped neurons in slices or dissociated neurons, TTX-sensitive and Na+-dependent inward current was observed to activate well below firing threshold (-60 to -50 mV). The low-threshold component of Na+ current inactivated slowly as compared with the fast component that mediates action potentials. However, its inactivation proceeded more rapidly than has been reported for the persistent Na+ current in cortical structures. Persistent Na+ current was generally absent or small in amplitude. The voltage dependence and kinetics of the slowly inactivating component of Na+ current are consistent with the hypothesis that it is partially deinactivated during spike afterhyperpolarizations and contributes significantly to subsequent depolarizing ramps. These observations implicate the slowly inactivating component of Na+ current in ionic mechanisms governing spontaneous firing in suprachiasmatic nucleus neurons.


Subject(s)
Action Potentials/physiology , Sodium Channels/physiology , Suprachiasmatic Nucleus/physiology , Animals , Male , Patch-Clamp Techniques , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...