Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
PLoS One ; 19(3): e0282938, 2024.
Article in English | MEDLINE | ID: mdl-38512983

ABSTRACT

Previously, we found that Wnt and Notch signaling govern stem cells of clear cell kidney cancer (ccRCC) in patients. To mimic stem cell responses in the normal kidney in vitro in a marker-unbiased fashion, we have established tubular organoids (tubuloids) from total single adult mouse kidney epithelial cells in Matrigel and serum-free conditions. Deep proteomic and phosphoproteomic analyses revealed that tubuloids resembled renewal of adult kidney tubular epithelia, since tubuloid cells displayed activity of Wnt and Notch signaling, long-term proliferation and expression of markers of proximal and distal nephron lineages. In our wish to model stem cell-derived human ccRCC, we have generated two types of genetic double kidney mutants in mice: Wnt-ß-catenin-GOF together with Notch-GOF and Wnt-ß-catenin-GOF together with a most common alteration in ccRCC, Vhl-LOF. An inducible Pax8-rtTA-LC1-Cre was used to drive recombination specifically in adult kidney epithelial cells. We confirmed mutagenesis of ß-catenin, Notch and Vhl alleles on DNA, protein and mRNA target gene levels. Surprisingly, we observed symptoms of chronic kidney disease (CKD) in mutant mice, but no increased proliferation and tumorigenesis. Thus, the responses of kidney stem cells in the tubuloid and genetic systems produced different phenotypes, i.e. enhanced renewal versus CKD.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Renal Insufficiency, Chronic , Adult , Humans , Mice , Animals , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , beta Catenin/metabolism , Proteomics , Stem Cells/metabolism , Renal Insufficiency, Chronic/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology
2.
Front Vet Sci ; 10: 1032835, 2023.
Article in English | MEDLINE | ID: mdl-37008367

ABSTRACT

First year medical and veterinary students are made very aware that drugs can have very different effects in various species or even in breeds of one specific species. On the other hand, the "One Medicine" concept implies that therapeutic and technical approaches are exchangeable between man and animals. These opposing views on the (dis)similarities between human and veterinary medicine are magnified in regenerative medicine. Regenerative medicine promises to stimulate the body's own regenerative capacity via activation of stem cells and/or the application of instructive biomaterials. Although the potential is enormous, so are the hurdles that need to be overcome before large scale clinical implementation is realistic. It is in the advancement of regenerative medicine that veterinary regenerative medicine can play an instrumental and crucial role. This review describes the discovery of (adult) stem cells in domesticated animals, mainly cats and dogs. The promise of cell-mediated regenerative veterinary medicine is compared to the actual achievements, and this will lead to a set of unanswered questions (controversies, research gaps, potential developments in relation to fundamental, pre-clinical, and clinical research). For veterinary regenerative medicine to have impact, either for human medicine and/or for domesticated animals, answering these questions is pivotal.

3.
J Vet Intern Med ; 37(2): 537-549, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36934445

ABSTRACT

BACKGROUND: In dogs with a congenital extrahepatic portosystemic shunt (EHPSS), outcome after surgical attenuation is difficult to predict. OBJECTIVES: Develop a minimally invasive test to predict outcome after surgical EHPSS attenuation and establish risk factors for postattenuation seizures (PAS). ANIMALS: Eighty-five client-owned dogs referred for surgical attenuation of a single EHPSS. METHODS: mRNA expression of 8 genes was measured in preoperatively collected venous blood samples. Outcome was determined at a median of 92 days (range, 26-208) postoperatively by evaluating clinical performance, blood test results and abdominal ultrasonography. Multivariable logistic regression was used to construct models predicting clinical and complete recovery. The associations between putative predictors and PAS were studied using univariable analyses. RESULTS: Five of 85 dogs developed PAS. Risk factors were age, white blood cell (WBC) count and expression of hepatocyte growth factor activator and LysM and putative peptidoglycan-binding domain-containing protein 2. Clinical recovery was observed in 72 of 85 dogs and complete recovery in 51 of 80 dogs (median follow-up, 92 days). The model predicting clinical recovery included albumin, WBC count, and methionine adenosyltransferase 2 alpha (MAT2α) expression, whereas the model predicting complete recovery included albumin, and connective tissue growth factor precursor and MAT2α expression. The areas under the receiver operating characteristic curves were 0.886 (95% confidence interval [CI]: 0.783, 0.990) and 0.794 (95% CI: 0.686, 0.902), respectively. CONCLUSIONS AND CLINICAL IMPORTANCE: Two models were constructed for predicting outcome after EHPSS attenuation using venous blood samples. The model predicting clinical recovery showed the best diagnostic properties. Clinical application requires further validation.


Subject(s)
Dog Diseases , Vascular Malformations , Dogs , Animals , Portal System/abnormalities , Serum Albumin , Ligation/veterinary , Seizures/veterinary , Vascular Malformations/veterinary , Dog Diseases/diagnostic imaging , Dog Diseases/genetics , Dog Diseases/surgery
4.
Biomedicines ; 11(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36830958

ABSTRACT

Wilson disease (WD) is a rare, inherited metabolic disorder manifested with varying clinical presentations including hepatic, neurological, psychiatric, and ophthalmological features, often in combination. Causative mutations in the ATP7B gene result in copper accumulation in hepatocytes and/or neurons, but clinical diagnosis remains challenging. Diagnosis is complicated by mild, non-specific presentations, mutations exerting no clear effect on protein function, and inconclusive laboratory tests, particularly regarding serum ceruloplasmin levels. As early diagnosis and effective treatment are crucial to prevent progressive damage, we report here on the establishment of a global collaboration of researchers, clinicians, and patient advocacy groups to identify and address the outstanding challenges posed by WD.

5.
J Cell Mol Med ; 26(19): 4949-4958, 2022 10.
Article in English | MEDLINE | ID: mdl-36017767

ABSTRACT

In Europe alone, each year 5500 people require a life-saving liver transplantation, but 18% die before receiving one due to the shortage of donor organs. Whole organ engineering, utilizing decellularized liver scaffolds repopulated with autologous cells, is an attractive alternative to increase the pool of available organs for transplantation. The development of this technology is hampered by a lack of a suitable large-animal model representative of the human physiology and a reliable and continuous cell source. We have generated porcine intrahepatic cholangiocyte organoids from adult stem cells and demonstrate that these cultures remained stable over multiple passages whilst retaining the ability to differentiate into hepatocyte- and cholangiocyte-like cells. Recellularization onto porcine scaffolds was efficient and the organoids homogeneously differentiated, even showing polarization. Our porcine intrahepatic cholangiocyte system, combined with porcine liver scaffold paves the way for developing whole liver engineering in a relevant large-animal model.


Subject(s)
Organoids , Tissue Scaffolds , Animals , Epithelial Cells , Extracellular Matrix , Hepatocytes , Humans , Liver , Swine , Tissue Engineering
6.
Front Bioeng Biotechnol ; 10: 868857, 2022.
Article in English | MEDLINE | ID: mdl-35813994

ABSTRACT

Liver diseases affect hundreds of millions of people worldwide; most often the hepatocytes or cholangiocytes are damaged. Diseases of the biliary tract cause severe patient burden, and cholangiocytes, the cells lining the biliary tract, are sensitive to numerous drugs. Therefore, investigations into proper cholangiocyte functions are of utmost importance, which is restricted, in vitro, by the lack of primary human cholangiocytes allowing such screening. To investigate biliary function, including transepithelial transport, cholangiocytes must be cultured as three-dimensional (3D) ductular structures. We previously established murine intrahepatic cholangiocyte organoid-derived cholangiocyte-like cells (CLCs) and cultured them onto polyethersulfone hollow fiber membranes (HFMs) to generate 3D duct structures that resemble native bile ducts at the structural and functional level. Here, we established an efficient, stepwise method for directed differentiation of human intrahepatic cholangiocyte organoids (ICOs) into CLCs. Human ICO-derived CLCs showed key characteristics of cholangiocytes, such as the expression of structural and functional markers, formation of primary cilia, and P-glycoprotein-mediated transport in a polarized fashion. The organoid cultures exhibit farnesoid X receptor (FXR)-dependent functions that are vital to liver bile acid homeostasis in vivo. Furthermore, human ICO-derived CLCs cultured on HFMs in a differentiation medium form tubular architecture with some tight, confluent, and polarized monolayers that better mimic native bile duct characteristics than differentiated cultures in standard 2D or Matrigel-based 3D culture plates. Together, our optimized differentiation protocol to obtain CLC organoids, when applied on HFMs to form bioengineered bile ducts, will facilitate studying cholangiopathies and allow developing therapeutic strategies.

7.
Front Vet Sci ; 9: 1086987, 2022.
Article in English | MEDLINE | ID: mdl-36699319

ABSTRACT

Fibroblast growth factors (FGFs) are involved in numerous metabolic processes. The endocrine subfamily of FGFs, consisting of FGF19, FGF21, and FGF23, might have beneficial effects in the treatment of diabetes mellitus (DM) and/or obesity. The analog with the greatest potential, FGF21, lowers blood glucose levels, improves insulin sensitivity, and induces weight loss in several animal models. In this review we summarize recent (pre)clinical findings with FGF21 analogs in animal models and men. Furthermore, possible applications of FGF21 analogs for pets with DM will be discussed. As currently, information about the use of FGF21 analogs in pet animals is scarce.

8.
Vet Q ; 41(1): 172-180, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33945400

ABSTRACT

The Hippo pathway is a highly conserved kinase cascade in mammals with the proteins YAP and TAZ as its most important downstream effectors that shuttle between cytoplasma and nucleus. It has a crucial role in processes such as embryogenesis, organ size control, homeostasis and tissue regeneration, where mechanosensing and/or cell-cell interactions are involved. As the pathway is associated with many essential functions in the body, its dysregulation is related to many diseases. In contrast to human pathology, a PubMed-search on Hippo, YAP/TAZ and companion animals (horse, equine, dog, canine, cat, feline) retrieved few publications. Because of its high level of functional conservation, it is anticipated that also in veterinary sciences aberrant Hippo YAP/TAZ signaling would be implicated in animal pathologies. Publications on Hippo YAP/TAZ in companion animals are mainly in cats and dogs and related to oncology. Here, we emphasize the important role of YAP/TAZ in liver diseases. First the liver has a remarkable regeneration capacity and a strict size control and the liver has a moderate liver cell renewal (homeostasis). The last years numerous papers show the importance of YAP/TAZ in hepatocellular carcinoma (HCC), hepatocyte differentiation and bile duct epithelial (BEC) cell survival. YAP/TAZ signaling is involved in activation of hepatic stellate cells crucial in fibrogenesis. The availability of drugs (e.g. verteporfin) targeting the YAP/TAZ pathway are described as is their potential usage in veterinary medicine. The aim of this overview is to stimulate researchers' and clinicians' interest in the potential role of Hippo YAP/TAZ signaling in veterinary medicine.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Cat Diseases/metabolism , Cats , Dog Diseases/metabolism , Dogs , Horse Diseases/metabolism , Horses , Liver Diseases , Liver Neoplasms/metabolism , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism
9.
Animals (Basel) ; 11(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668783

ABSTRACT

Wilson's Disease is a rare autosomal recessive disorder in humans, often presenting with hepatic copper overload. Finding the genetic cause of a rare disease, especially if it is related to food constituents like the trace element copper, is a Herculean task. This review describes examples of how the unique population structure of in-bred dog strains led to the discovery of a novel gene and two modifier genes involved in inherited copper toxicosis. COMMD1, after the discovery in 2002, was shown to be a highly promiscuous protein involved in copper transport, protein trafficking/degradation, regulation of virus replication, and inflammation. Mutations in the ATP7A and ATP7B proteins in Labrador retrievers and Dobermann dogs resulted in a wide variation in hepatic copper levels in these breeds. To our knowledge, numerous dog breeds with inherited copper toxicosis of unknown genetic origin exist. Therefore, the possibility that men's best friend will provide new leads in rare copper storage diseases seems realistic.

10.
J Trace Elem Med Biol ; 65: 126712, 2021 May.
Article in English | MEDLINE | ID: mdl-33482423

ABSTRACT

Copper is a trace element indispensable for life, but at the same time it is implicated in reactive oxygen species formation. Several inherited copper storage diseases are described of which Wilson disease (copper overload, mutations in ATP7B gene) and Menkes disease (copper deficiency, mutations in ATP7A gene) are the most prominent ones. After the discovery in 2002 of a novel gene product (i.e. COMMD1) involved in hepatic copper handling in Bedlington terriers, studies on the mechanism of action of COMMD1 revealed numerous non-copper related functions. Effects on hepatic copper handling are likely mediated via interactions with ATP7B. In addition, COMMD1 has many more interacting partners which guide their routing to either the plasma membrane or, often in an ubiquitination-dependent fashion, trigger their proteolysis via the S26 proteasome. By stimulating NF-κB ubiquitination, COMMD1 dampens an inflammatory reaction. Finally, targeting COMMD1 function can be a novel approach in the treatment of tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Copper/metabolism , Homeostasis , Inflammation/metabolism , Neoplasms/metabolism , Humans
11.
Tissue Eng Part C Methods ; 27(2): 59-76, 2021 02.
Article in English | MEDLINE | ID: mdl-33267737

ABSTRACT

Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.


Subject(s)
Bile Ducts , Tissue Engineering , Epithelial Cells , Hepatocytes , Liver
12.
Cells ; 9(10)2020 10 06.
Article in English | MEDLINE | ID: mdl-33036257

ABSTRACT

Lipids play Jekyll and Hyde in the liver. On the one hand, the lipid-laden status of hepatic stellate cells is a hallmark of healthy liver. On the other hand, the opposite is true for lipid-laden hepatocytes-they obstruct liver function. Neglected lipid accumulation in hepatocytes can progress into hepatic fibrosis, a condition induced by the activation of stellate cells. In their resting state, these cells store substantial quantities of fat-soluble vitamin A (retinyl esters) in large lipid droplets. During activation, these lipid organelles are gradually degraded. Hence, treatment of fatty liver disease is treading a tightrope-unsophisticated targeting of hepatic lipid accumulation might trigger problematic side effects on stellate cells. Therefore, it is of great importance to gain more insight into the highly dynamic lipid metabolism of hepatocytes and stellate cells in both quiescent and activated states. In this review, part of the special issue entitled "Cellular and Molecular Mechanisms underlying the Pathogenesis of Hepatic Fibrosis 2020", we discuss current and highly versatile aspects of neutral lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).


Subject(s)
Hepatic Stellate Cells/metabolism , Lipid Metabolism/physiology , Non-alcoholic Fatty Liver Disease/metabolism , Humans
13.
Article in English | MEDLINE | ID: mdl-32903631

ABSTRACT

Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.

14.
Cells ; 9(4)2020 03 28.
Article in English | MEDLINE | ID: mdl-32231153

ABSTRACT

Functional intestinal disorders constitute major, potentially lethal health problems in humans. Consequently, research focuses on elucidating the underlying pathobiological mechanisms and establishing therapeutic strategies. In this context, intestinal organoids have emerged as a potent in vitro model as they faithfully recapitulate the structure and function of the intestinal segment they represent. Interestingly, human-like intestinal diseases also affect dogs, making canine intestinal organoids a promising tool for canine and comparative research. Therefore, we generated organoids from canine duodenum, jejunum and colon, and focused on simultaneous long-term expansion and cell differentiation to maximize applicability. Following their establishment, canine intestinal organoids were grown under various culture conditions and then analyzed with respect to cell viability/apoptosis and multi-lineage differentiation by transcription profiling, proliferation assay, cell staining, and transmission electron microscopy. Standard expansion medium supported long-term expansion of organoids irrespective of their origin, but inhibited cell differentiation. Conversely, transfer of organoids to differentiation medium promoted goblet cell and enteroendocrine cell development, but simultaneously induced apoptosis. Unimpeded stem cell renewal and concurrent differentiation was achieved by culturing organoids in the presence of tyrosine kinase ligands. Our findings unambiguously highlight the characteristic cellular diversity of canine duodenum, jejunum and colon as fundamental prerequisite for accurate in vitro modelling.


Subject(s)
Cell Differentiation , Intestines/cytology , Organoids/cytology , Animals , Biomarkers/metabolism , Cell Lineage , Cells, Cultured , Culture Media , Dogs , Enteroendocrine Cells/cytology , Female , Goblet Cells/cytology , Male , Organoids/growth & development , Organoids/ultrastructure
15.
Ir Vet J ; 73: 6, 2020.
Article in English | MEDLINE | ID: mdl-32266057

ABSTRACT

Hepatitis E virus (HEV) as an emerging zoonotic pathogen causes a major public health issue. Transmission from domestic, wildlife and zoo animals to human has been widely reported. Whether pets also serve as reservoirs remains an intriguing question. In this study, we found the sero-positive rates of HEV-specific antibodies in pet dogs, cats and horses of 18.52% (30/162), 14.89% (7/47) and 18.18% (4/22) in the Netherlands. Although HEV viral RNA was not detected in these animals, we have demonstrated that dog liver cells are susceptible to HEV infection in vitro. These results call more attention to address the potential role of pets in the zoonotic transmission of HEV.

16.
Cells ; 9(2)2020 02 11.
Article in English | MEDLINE | ID: mdl-32053895

ABSTRACT

The shortage of liver organ donors is increasing and the need for viable alternatives is urgent. Liver cell (hepatocyte) transplantation may be a less invasive treatment compared with liver transplantation. Unfortunately, hepatocytes cannot be expanded in vitro, and allogenic cell transplantation requires long-term immunosuppression. Organoid-derived adult liver stem cells can be cultured indefinitely to create sufficient cell numbers for transplantation, and they are amenable to gene correction. This study provides preclinical proof of concept of the potential of cell transplantation in a large animal model of inherited copper toxicosis, such as Wilson's disease, a Mendelian disorder that causes toxic copper accumulation in the liver. Hepatic progenitors from five COMMD1-deficient dogs were isolated and cultured using the 3D organoid culture system. After genetic restoration of COMMD1 expression, the organoid-derived hepatocyte-like cells were safely delivered as repeated autologous transplantations via the portal vein. Although engraftment and repopulation percentages were low, the cells survived in the liver for up to two years post-transplantation. The low engraftment was in line with a lack of functional recovery regarding copper excretion. This preclinical study confirms the survival of genetically corrected autologous organoid-derived hepatocyte-like cells in vivo and warrants further optimization of organoid engraftment and functional recovery in a large animal model of human liver disease.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Liver Diseases/therapy , Metabolic Diseases/therapy , Organoids/transplantation , Adaptor Proteins, Signal Transducing/deficiency , Animals , Dog Diseases/genetics , Dog Diseases/therapy , Dogs , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Diseases/genetics , Liver Diseases/pathology , Liver Diseases/veterinary , Liver Transplantation , Metabolic Diseases/genetics , Metabolic Diseases/pathology , Metabolic Diseases/veterinary
17.
Adv Funct Mater ; 30(48): 2000893, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-34658689

ABSTRACT

End-stage liver diseases are an increasing health burden, and liver transplantations are currently the only curative treatment option. Due to a lack of donor livers, alternative treatments are urgently needed. Human liver organoids are very promising for regenerative medicine; however, organoids are currently cultured in Matrigel, which is extracted from the extracellular matrix of the Engelbreth-Holm-Swarm mouse sarcoma. Matrigel is poorly defined, suffers from high batch-to-batch variability and is of xenogeneic origin, which limits the clinical application of organoids. Here, a novel hydrogel based on polyisocyanopeptides (PIC) and laminin-111 is described for human liver organoid cultures. PIC is a synthetic polymer that can form a hydrogel with thermosensitive properties, making it easy to handle and very attractive for clinical applications. Organoids in an optimized PIC hydrogel proliferate at rates comparable to those observed with Matrigel; proliferation rates are stiffness-dependent, with lower stiffnesses being optimal for organoid proliferation. Moreover, organoids can be efficiently differentiated toward a hepatocyte-like phenotype with key liver functions. This proliferation and differentiation potential maintain over at least 14 passages. The results indicate that PIC is very promising for human liver organoid culture and has the potential to be used in a variety of clinical applications including cell therapy and tissue engineering.

18.
J Feline Med Surg ; 22(6): 500-505, 2020 06.
Article in English | MEDLINE | ID: mdl-31322470

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate if de novo hepatic lipid synthesis contributes to fatty acid overload in the liver of cats with feline hepatic lipidosis (FHL). METHODS: Lipogenic gene expression of peroxisome proliferator-activated receptor-alpha (PPAR-α), peroxisome proliferator-activated receptor-gamma (PPAR-γ), fatty acid synthase (FASN) and sterol regulatory element-binding factor (SREBF1) were evaluated using quantitative RT-PCR in liver tissue of six cats with FHL and compared with the liver tissue of eight healthy cats. RESULTS: In liver tissue, PPAR-α, PPAR-γ and FASN mRNA expression levels were not significantly different (P >0.12, P >0.89 and P >0.5, respectively) in the FHL group compared with the control group. SREBF1 gene expression was downregulated around 10-fold in the FHL group vs the control group (P = 0.039). CONCLUSIONS AND RELEVANCE: The downregulation of SREBF1 in the liver tissue of cats with FHL does not support the hypothesis that de novo lipogenesis in the liver is an important pathway of fatty acid accumulation in FHL.


Subject(s)
Cat Diseases/genetics , Gene Expression , Lipidoses/veterinary , Lipogenesis/genetics , Animals , Cat Diseases/metabolism , Cats , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Lipidoses/genetics , Lipidoses/metabolism , Lipids/biosynthesis , Liver/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
19.
Hepatology ; 72(1): 257-270, 2020 07.
Article in English | MEDLINE | ID: mdl-31715015

ABSTRACT

BACKGROUND AND AIMS: The gap between patients on transplant waiting lists and available donor organs is steadily increasing. Human organoids derived from leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)-positive adult stem cells represent an exciting new cell source for liver regeneration; however, culturing large numbers of organoids with current protocols is tedious and the level of hepatic differentiation is limited. APPROACH AND RESULTS: Here, we established a method for the expansion of large quantities of human liver organoids in spinner flasks. Due to improved oxygenation in the spinner flasks, organoids rapidly proliferated and reached an average 40-fold cell expansion after 2 weeks, compared with 6-fold expansion in static cultures. The organoids repopulated decellularized liver discs and formed liver-like tissue. After differentiation in spinner flasks, mature hepatocyte markers were highly up-regulated compared with static organoid cultures, and cytochrome p450 activity reached levels equivalent to hepatocytes. CONCLUSIONS: We established a highly efficient method for culturing large numbers of LGR5-positive stem cells in the form of organoids, which paves the way for the application of organoids for tissue engineering and liver transplantation.


Subject(s)
Cell Culture Techniques , Cell Proliferation , Hepatocytes/cytology , Liver Regeneration , Liver Transplantation , Organoids/cytology , Receptors, G-Protein-Coupled/biosynthesis , Stem Cells/metabolism , Tissue Engineering , Cell Differentiation , Cells, Cultured , Humans
20.
J Vet Intern Med ; 34(1): 132-138, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31830357

ABSTRACT

BACKGROUND: Hepatic lipidosis is increasing in incidence in the Western world, with cats being particularly sensitive. When cats stop eating and start utilizing their fat reserves, free fatty acids (FFAs) increase in blood, causing an accumulation of triacylglycerol (TAG) in the liver. OBJECTIVE: Identifying potential new drugs that can be used to treat hepatic lipidosis in cats using a feline hepatic organoid system. ANIMALS: Liver organoids obtained from 6 cats. METHODS: Eight different drugs were tested, and the 2 most promising were further studied using a quantitative TAG assay, lipid droplet staining, and qPCR. RESULTS: Both T863 (a diacylglycerol O-acyltransferase 1 [DGAT1] inhibitor) and 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR; an adenosine monophosphate kinase activator) decreased TAG accumulation by 55% (P < .0001) and 46% (P = .0003), respectively. Gene expression of perilipin 2 (PLIN2) increased upon the addition of FFAs to the medium and decreased upon treatment with AICAR but not significantly after treatment with T863. CONCLUSIONS AND CLINICAL IMPORTANCE: Two potential drugs useful in the treatment of hepatic lipidosis in cats were identified. The drug T863 inhibits DGAT1, indicating that DGAT1 is the primary enzyme responsible for TAG synthesis from external fatty acids in cat organoids. The drug AICAR may act as a lipid-lowering compound via decreasing PLIN2 mRNA. Liver organoids can be used as an in vitro tool for drug testing in a species-specific system and provide the basis for further clinical testing of drugs to treat steatosis.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Cat Diseases/drug therapy , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Fatty Liver/veterinary , Lipidoses/veterinary , Organoids/metabolism , Ribonucleotides/pharmacology , Aminoimidazole Carboxamide/pharmacology , Animals , Cat Diseases/metabolism , Cats , Fatty Acids, Nonesterified/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , Lipidoses/drug therapy , Lipidoses/metabolism , Liver/drug effects , Liver/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...