Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
ChemMedChem ; : e202400081, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976686

ABSTRACT

A series of 7-substituted coumarin derivatives have been characterized as pan-aldo-keto reductase family 1C (AKR1C) inhibitors. The AKR1C family of enzymes are overexpressed in numerous cancers where they are involved in drug resistance development. 7-hydroxy coumarin ethyl esters and their corresponding amides have high potency for AKR1C3 and AKR1C2 inhibition. Coumarin amide 3a possessed IC50 values of 50 nM and 90 nM for AKR1C3 and AKR1C2, respectively, and exhibits 'drug-like' metabolic stability and half-life in human and mouse liver microsomes and plasma. Compound 3a was employed as a chemical tool to determine pan-AKR1C2/3 inhibition effects both as a radiation sensitizer and as a potentiator of chemotherapy cytotoxicity. In contrast to previously reported pan-AKR1C inhibitors, 3a demonstrated no radiation sensitization effect in a radiation-resistant prostate cancer cell line model. Pan-AKR1C inhibition also did not potentiate the in vitro cytotoxicity of ABT-737, daunorubicin or dexamethasone, in two patient-derived T-cell ALL and pre-B-cell ALL cell lines.  In contrast, a highly selective AKR1C3 inhibitor, compound K90, enhanced the cytotoxicity of both ABT-737 and daunorubicin in the T-cell ALL cell line model. Thus, the inhibitory profile of the AKR1C family inhibitor required to effect enhancement of chemotherapeutic cytotoxicity may be chemotherapeutic agent-specific in leukemia.

2.
Chem Biol Interact ; 398: 111111, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38878851

ABSTRACT

The aldo-keto reductase (AKR) superfamily is a large family of proteins found across the kingdoms of life. Shared features of the family include 1) structural similarities such as an (α/ß)8-barrel structure, disordered loop structure, cofactor binding site, and a catalytic tetrad, and 2) the ability to catalyze the nicotinamide adenine dinucleotide (phosphate) reduced (NAD(P)H)-dependent reduction of a carbonyl group. A criteria of family membership is that the protein must have a measured function, and thus, genomic sequences suggesting the transcription of potential AKR proteins are considered pseudo-members until evidence of a functionally expressed protein is available. Currently, over 200 confirmed AKR superfamily members are reported to exist. A systematic nomenclature for the AKR superfamily exists to facilitate family and subfamily designations of the member to be communicated easily. Specifically, protein names include the root "AKR", followed by the family represented by an Arabic number, the subfamily-if one exists-represented by a letter, and finally, the individual member represented by an Arabic number. The AKR superfamily database has been dedicated to tracking and reporting the current knowledge of the AKRs since 1997, and the website was last updated in 2003. Here, we present an updated version of the website and database that were released in 2023. The database contains genetic, functional, and structural data drawn from various sources, while the website provides alignment information and family tree structure derived from bioinformatics analyses.


Subject(s)
Aldo-Keto Reductases , Databases, Protein , Aldo-Keto Reductases/metabolism , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/chemistry , Humans , Internet , Aldehyde Reductase/metabolism , Aldehyde Reductase/chemistry , Aldehyde Reductase/genetics , Animals
3.
Commun Chem ; 7(1): 95, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684887

ABSTRACT

Aldo-keto reductase 1C3 (AKR1C3) is a protein upregulated in prostate cancer, hematological malignancies, and other cancers where it contributes to proliferation and chemotherapeutic resistance. Androgen receptor splice variant 7 (ARv7) is the most common mutation of the AR receptor that confers resistance to clinical androgen receptor signalling inhibitors in castration-resistant prostate cancer. AKR1C3 interacts with ARv7 promoting stabilization. Herein we report the discovery of the first-in-class AKR1C3 Proteolysis-Targeting Chimera (PROTAC) degrader. This first-generation degrader potently reduced AKR1C3 expression in 22Rv1 prostate cancer cells with a half-maximal degradation concentration (DC50) of 52 nM. Gratifyingly, concomitant degradation of ARv7 was observed with a DC50 = 70 nM, along with degradation of the AKR1C3 isoforms AKR1C1 and AKR1C2 to a lesser extent. This compound represents a highly useful chemical tool and a promising strategy for prostate cancer intervention.

4.
Methods Enzymol ; 689: 277-301, 2023.
Article in English | MEDLINE | ID: mdl-37802574

ABSTRACT

In mammals there are two 3-oxo-4-ene steroid reductases that generate either A/B-trans or A/B cis-ring junctions in the steroid nucleus known as steroid 5α- and 5ß- reductases, respectively. There is only one steroid 5ß- reductase in each species and these are members of the aldo-keto-reductase (AKR) protein superfamily. The corresponding human enzyme is AKR1D1, and it plays an essential role in bile-acid biosynthesis. Germline mutations in AKR1D1 give rise to bile-acid deficiency. Because of its central role in steroid metabolism and need for detailed structure-function studies there is a need to purify the enzyme to homogeneity and in high yield. We report the purification of milligram amounts of crystallographic quality homogeneous recombinant protein for structure-function studies and its characterization.


Subject(s)
Oxidoreductases , Steroids , Animals , Humans , Oxidoreductases/chemistry , Steroids/chemistry , Steroids/metabolism , Bile Acids and Salts , Mammals/metabolism
5.
Vitam Horm ; 123: 439-481, 2023.
Article in English | MEDLINE | ID: mdl-37717994

ABSTRACT

The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Androgens , Androgen Antagonists , Ligands
6.
Cancer Res Commun ; 3(9): 1888-1898, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37772993

ABSTRACT

Androgen receptor signaling inhibitors (ARSI) are used to treat castration-resistant prostate cancer (CRPC) to stop a resurgence of androgen receptor (AR) signaling. Despite early success, patients on ARSIs eventually relapse, develop drug resistance, and succumb to the disease. Resistance may occur through intratumoral steroidogenesis mediated by upregulation of aldo-keto reductase family 1C member 3 (AKR1C3). Patients treated with leuprolide (castrate) and those treated with leuprolide plus abiraterone (post-Abi) harbor a reservoir of DHEA-S which could fuel testosterone (T) biosynthesis via AKR1C3 to cause a resurgence of prostate cancer cell growth. We demonstrate that concentrations of DHEA-S found in castrate and post-Abi patients are (i) converted to T in an AKR1C3-dependent manner in prostate cancer cells, and (ii) in amounts sufficient to stimulate AKR1C3-dependent cell growth. We observed this in primary and metastatic prostate cancer cell lines, CWR22PC and DuCaP, respectively. Androgen measurements were made by stable isotope dilution LC-MS/MS. We demonstrate AKR1C3 dependence using stable short hairpin RNA knockdown and pharmacologic inhibitors. We also demonstrate that free DHEA is reduced to 5-androstene-3ß,17ß-diol (5-Adiol) by AKR1C3 and that this is a major metabolite, suggesting that in our cell lines 5-Adiol is a predominant precursor of T. We have identified a mechanism of ARSI resistance common to both primary and metastatic cell lines that is dependent on the conversion of DHEA to 5-Adiol on route to T catalyzed by AKR1C3. SIGNIFICANCE: We show that reservoirs of DHEA-S that remain after ARSI treatment are converted into T in primary and metastatic prostate cancer cells in amounts sufficient to stimulate cell growth. Pharmacologic and genetic approaches demonstrate that AKR1C3 is required for these effects. Furthermore, the route to T proceeds through 5-Adiol. We propose that this is a mechanism of ARSI drug resistance.


Subject(s)
Prostatic Neoplasms , Testosterone , Male , Humans , Testosterone/pharmacology , Prostatic Neoplasms/drug therapy , Testosterone Congeners , Androstenes , Dehydroepiandrosterone Sulfate , Aldo-Keto Reductase Family 1 Member C3
7.
Front Public Health ; 11: 1002597, 2023.
Article in English | MEDLINE | ID: mdl-37435521

ABSTRACT

Background: Lung cancer remains a major health problem world-wide. Environmental exposure to lung cancer carcinogens can affect lung cancer incidence. We investigated the association between lung cancer incidence and an air toxics hazard score of environmental carcinogen exposures derived previously under the exposome concept. Methods: Lung cancer cases diagnosed in Philadelphia and the surrounding counties between 2008 and 2017 were identified from the Pennsylvania Cancer Registry. Age-adjusted incidence rates at the ZIP code level were calculated based on the residential address at diagnosis. The air toxics hazard score, an aggregate measure for lung cancer carcinogen exposures, was derived using the criteria of toxicity, persistence, and occurrence. Areas with high incidence or hazard score were identified. Spatial autoregressive models were fitted to evaluate the association, with and without adjusting for confounders. Stratified analysis by smoking prevalence was performed to examine potential interactions. Results: We observed significantly higher age-adjusted incidence rates in ZIP codes that had higher air toxics hazard score values after controlling for demographic variables, smoking prevalence, and proximity to major highways. Analyzes stratified by smoking prevalence suggested that exposure to environmental lung carcinogens had a larger effect on cancer incidence in locations with higher smoking prevalence. Conclusion: The positive association between the multi-criteria derived air toxics hazard score and lung cancer incidence provides the initial evidence to validate the hazard score as an aggregate measure of carcinogenic exposures in the environment. The hazard score can be used to supplement the existing risk factors in identifying high risk individuals. Communities with higher incidence/hazard score may benefit from greater awareness of lung cancer risk factors and targeted screening programs.


Subject(s)
Lung Neoplasms , Humans , Incidence , Lung Neoplasms/epidemiology , Carcinogens , Smoking , Carcinogenesis
8.
J Med Chem ; 66(14): 9894-9915, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37428858

ABSTRACT

Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in castration-resistant prostate cancer where it acts to drive proliferation and aggressiveness by producing androgens. The reductive action of the enzyme leads to chemoresistance development against various clinical antineoplastics across a range of cancers. Herein, we report the continued optimization of selective AKR1C3 inhibitors and the identification of 5r, a potent AKR1C3 inhibitor (IC50 = 51 nM) with >1216-fold selectivity for AKR1C3 over closely related isoforms. Due to the cognizance of the poor pharmacokinetics associated with free carboxylic acids, a methyl ester prodrug strategy was pursued. The prodrug 4r was converted to free acid 5r in vitro in mouse plasma and in vivo. The in vivo pharmacokinetic evaluation revealed an increase in systemic exposure and increased the maximum 5r concentration compared to direct administration of the free acid. The prodrug 4r demonstrated a dose-dependent effect to reduce the tumor volume of 22Rv1 prostate cancer xenografts without observed toxicity.


Subject(s)
Antineoplastic Agents , Prodrugs , Prostatic Neoplasms , Male , Humans , Animals , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Heterografts , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Aldo-Keto Reductase Family 1 Member C3 , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , 3-Hydroxysteroid Dehydrogenases/therapeutic use
10.
Cancer Res Commun ; 3(3): 371-382, 2023 03.
Article in English | MEDLINE | ID: mdl-36875158

ABSTRACT

Vitamin D deficiency is associated with an increased risk of prostate cancer mortality and is hypothesized to contribute to prostate cancer aggressiveness and disparities in African American populations. The prostate epithelium was recently shown to express megalin, an endocytic receptor that internalizes circulating globulin-bound hormones, which suggests regulation of intracellular prostate hormone levels. This contrasts with passive diffusion of hormones that is posited by the free hormone hypothesis. Here, we demonstrate that megalin imports testosterone bound to sex hormone-binding globulin into prostate cells. Prostatic loss of Lrp2 (megalin) in a mouse model resulted in reduced prostate testosterone and dihydrotestosterone levels. Megalin expression was regulated and suppressed by 25-hydroxyvitamin D (25D) in cell lines, patient-derived prostate epithelial cells, and prostate tissue explants. In patients, the relationships between hormones support this regulatory mechanism, as prostatic DHT levels are higher in African American men and are inversely correlated with serum 25D status. Megalin levels are reduced in localized prostate cancer by Gleason grade. Our findings suggest that the free hormone hypothesis should be revisited for testosterone and highlight the impact of vitamin D deficiency on prostate androgen levels, which is a known driver of prostate cancer. Thus, we revealed a mechanistic link between vitamin D and prostate cancer disparities observed in African Americans. Significance: These findings link vitamin D deficiency and the megalin protein to increased levels of prostate androgens, which may underpin the disparity in lethal prostate cancer in African America men.


Subject(s)
Androgens , Calcifediol , Low Density Lipoprotein Receptor-Related Protein-2 , Prostatic Neoplasms , Vitamin D Deficiency , Animals , Humans , Male , Mice , Black or African American , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Prostate/metabolism , Testosterone , Vitamin D/metabolism
11.
Endocrinology ; 164(5)2023 03 13.
Article in English | MEDLINE | ID: mdl-36799021

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women. In PCOS, insulin resistance and hyperandrogenism could drive the increased risk for cardiometabolic disease. Aldo-keto reductase family 1 member C3 (AKR1C3) is induced by insulin in PCOS adipocytes and is the predominant enzyme for potent androgen formation causing ligand-dependent androgen receptor (AR) activation. AR induces fatty acid synthase (FASN), a central enzyme for de novo lipogenesis. To investigate how insulin signaling induces AKR1C3 to promote lipid overload through induction of FASN, we used differentiated human Simpson-Golabi-Behmel syndrome adipocytes as a model for PCOS adipocytes. Induction of AKR1C3 and FASN was shown to be dependent on phosphoinositide 3-kinase/protein kinase B/ mammalian target of rapamycin/nuclear factor-erythroid 2-related factor 2 using pharmacological and genetic manipulation. FASN induction was shown to be AKR1C3 and AR dependent. Monofunctional AKR1C3 inhibitors, which competitively inhibit AKR1C3, did not block FASN induction, whereas bifunctional inhibitors, which competitively inhibit AKR1C3 and attenuate AR signaling by increasing AR degradation and ubiquitination, did suggesting a nonenzymatic role for AKR1C3 to stabilize AR. AKR1C3 and AR interacted as seen by co-immunoprecipitation, proximity ligation assay, and co-occupancy on FASN locus using chromatin immunoprecipitation-quantitative polymerase chain reaction assays in a ligand-dependent and ligand-independent manner. In the absence of androgens, bifunctional inhibitors prevented lipid droplet formation, whereas monofunctional inhibitors did not. We propose that AKR1C3 has 2 roles in PCOS: to catalyze potent androgen formation in adipocytes promoting hyperandrogenism and to induce FASN by stabilizing AR in the absence of androgens. AKR1C3 may be a therapeutic target for bifunctional inhibitors to reduce cardiometabolic disease in PCOS women.


Subject(s)
Cardiovascular Diseases , Hyperandrogenism , Polycystic Ovary Syndrome , Humans , Female , Aldo-Keto Reductase Family 1 Member C3/metabolism , Androgens/pharmacology , Androgens/metabolism , Insulin , Ligands , Phosphatidylinositol 3-Kinases , Adipocytes/metabolism
12.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768194

ABSTRACT

Steroid hormones synchronize a variety of functions throughout all stages of life. Importantly, steroid hormone-transforming enzymes are ultimately responsible for the regulation of these potent signaling molecules. Germline mutations that cause dysfunction in these enzymes cause a variety of endocrine disorders. Mutations in SRD5A2, HSD17B3, and HSD3B2 genes that lead to disordered sexual development, salt wasting, and other severe disorders provide a glimpse of the impacts of mutations in steroid hormone transforming enzymes. In a departure from these established examples, this review examines disease-associated germline coding mutations in steroid-transforming members of the human aldo-keto reductase (AKR) superfamily. We consider two main categories of missense mutations: those resulting from nonsynonymous single nucleotide polymorphisms (nsSNPs) and cases resulting from familial inherited base pair substitutions. We found mutations in human AKR1C genes that disrupt androgen metabolism, which can affect male sexual development and exacerbate prostate cancer and polycystic ovary syndrome (PCOS). Others may be disease causal in the AKR1D1 gene that is responsible for bile acid deficiency. However, given the extensive roles of AKRs in steroid metabolism, we predict that with expanding publicly available data and analysis tools, there is still much to be uncovered regarding germline AKR mutations in disease.


Subject(s)
Germ-Line Mutation , Oxidoreductases , Male , Humans , Aldo-Keto Reductases/genetics , Oxidoreductases/metabolism , Steroids/metabolism , Hormones , Membrane Proteins/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics
13.
Chem Res Toxicol ; 36(2): 270-280, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36693016

ABSTRACT

1-Nitropyrene (1-NP) is a constituent of diesel exhaust and classified as a group 2A probable human carcinogen. The metabolic activation of 1-NP by nitroreduction generates electrophiles that can covalently bind DNA to form mutations to contribute to cancer causation. NADPH-dependent P450 oxidoreductase (POR), xanthine oxidase (XO), aldehyde oxidase (AOX), and NAD(P)H/quinone oxidoreductase 1 (NQO1) may catalyze 1-NP nitroreduction. We recently found that human recombinant aldo-keto reductases (AKRs) 1C1-1C3 catalyze 1-NP nitroreduction. NQO1 and AKR1C1-1C3 are genes induced by nuclear factor erythroid 2-related factor 2 (NRF2). Despite this knowledge, the relative importance of these enzymes and NRF2 to 1-NP nitroreduction is unknown. We used a combination of pharmacological and genetic approaches to assess the relative importance of these enzymes and NRF2 in the aerobic nitroreduction of 1-NP in human bronchial epithelial cells, A549 and HBEC3-KT. 1-NP nitroreduction was assessed by the measurement of 1-aminopyrene (1-AP), the six-electron reduced metabolite of 1-NP, based on its intrinsic fluorescence properties (λex and λem). We found that co-treatment of 1-NP with salicylic acid, an AKR1C1 inhibitor, or ursodeoxycholate, an AKR1C2 inhibitor, for 48 h decreased 1-AP production relative to 1-NP treatment alone (control) in both cell lines. R-Sulforaphane or 1-(2-cyano-3,12,28-trioxooleana-1,9(11)-dien-28-yl)-1H-imidazole (CDDO-Im), two NRF2 activators, each increased 1-AP production relative to control only in HBEC3-KT cells, which have inducible NRF2. Inhibitors of POR, NQO1, and XO failed to modify 1-AP production relative to control in both cell lines. Importantly, A549 wild-type cells with constitutively active NRF2 produced more 1-AP than A549 cells with heterozygous expression of NFE2L2/NRF2, which were able to produce more 1-AP than A549 cells with homozygous knockout of NFE2L2/NRF2. Together, these data show dependence of 1-NP metabolic activation on AKR1Cs and NRF2 in human lung cells. This is the second example whereby NFE2L2/NRF2 is implicated in the carcinogenicity of diesel exhaust constituents.


Subject(s)
NF-E2-Related Factor 2 , Vehicle Emissions , Humans , Activation, Metabolic , Aldo-Keto Reductases/metabolism , Lung/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
14.
Chem Res Toxicol ; 35(12): 2324-2334, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36458907

ABSTRACT

Integrating computational chemistry and toxicology can improve the read-across analog approach to fill data gaps in chemical safety assessment. In read-across, structure-related parameters are compared between a target chemical with insufficient test data and one or more materials with sufficient data. Recent advances have focused on enhancing the grouping or clustering of chemicals to facilitate toxicity prediction via read-across. Analog selection ascertains relevant features, such as physical-chemical properties, toxicokinetic-related properties (bioavailability, metabolism, and degradation pathways), and toxicodynamic properties of chemicals with an emphasis on mechanisms or modes of action. However, each human health end point (genotoxicity, skin sensitization, phototoxicity, repeated dose toxicity, reproductive toxicity, and local respiratory toxicity) provides a different critical context for analog selection. Here six end point-specific, rule-based schemes are described. Each scheme creates an end point-specific workflow for filling the target material data gap by read-across. These schemes are intended to create a transparent rationale that supports the selected read-across analog(s) for the specific end point under study. This framework can systematically drive the selection of read-across analogs for each end point, thereby accelerating the safety assessment process.


Subject(s)
Perfume , Humans , Perfume/chemistry , Toxicity Tests , Risk Assessment , DNA Damage
15.
Dev Cell ; 57(22): 2566-2583.e8, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36413950

ABSTRACT

The mechanisms leading to adrenal cortex development and steroid synthesis in humans remain poorly understood due to the paucity of model systems. Herein, we recapitulate human fetal adrenal cortex specification processes through stepwise induction of human-induced pluripotent stem cells through posterior intermediate mesoderm-like and adrenocortical progenitor-like states to ultimately generate fetal zone adrenal-cortex-like cells (FZLCs), as evidenced by histomorphological, ultrastructural, and transcriptome features and adrenocorticotropic hormone (ACTH)-independent Δ5 steroid biosynthesis. Furthermore, FZLC generation is promoted by SHH and inhibited by NOTCH, ACTIVIN, and WNT signaling, and steroid synthesis is amplified by ACTH/PKA signaling and blocked by inhibitors of Δ5 steroid synthesis enzymes. Finally, NR5A1 promotes FZLC survival and steroidogenesis. Together, these findings provide a framework for understanding and reconstituting human adrenocortical development in vitro, paving the way for cell-based therapies of adrenal insufficiency.


Subject(s)
Adrenal Cortex , Induced Pluripotent Stem Cells , Humans , Wnt Signaling Pathway , Adrenocorticotropic Hormone , Steroids
16.
Chem Res Toxicol ; 35(12): 2296-2309, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36399404

ABSTRACT

1-Nitropyrene (1-NP) and 1,8-dinitropyrene (1,8-DNP) are diesel exhaust constituents and are classified by the International Agency for Research on Cancer as probable (Group 2A) or possible (Group 2B) human carcinogens. These nitroarenes undergo metabolic activation by nitroreduction to result in the formation of DNA adducts. Human aldo-keto reductases (AKRs) 1C1-1C3 catalyze the nitroreduction of 3-nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA), but the extent of AKR contribution toward the nitroreduction of additional nitroarenes, including 1-NP and 1,8-DNP, is currently unknown. In the present study, we investigated the ability of human recombinant AKRs to catalyze 1-NP and 1,8-DNP nitroreduction by measuring the formation of the respective six-electron reduced amine products in discontinuous ultraviolet-reverse phase high-performance liquid chromatography enzymatic assays. We found that AKR1C1-1C3 were able to catalyze the formation of 1-aminopyrene (1-AP) and 1-amino-8-nitropyrene (1,8-ANP) in our reactions with 1-NP and 1,8-DNP, respectively. We determined kinetic parameters (Km, kcat, and kcat/Km) and found that out of the three isoforms, AKR1C1 had the highest catalytic efficiency (kcat/Km) for 1-AP formation, whereas AKR1C3 had the highest catalytic efficiency for 1,8-ANP formation. Use of ultra-performance liquid chromatography high-resolution mass spectrometry verified amine product identity and provided evidence for the formation of nitroso- and hydroxylamino-intermediates in our reactions. Our study expands the role of AKR1C1-1C3, which are expressed in human lung cells, in the metabolic activation of nitroarenes that can lead to DNA adduct formation, mutation, and carcinogenesis.


Subject(s)
Aldo-Keto Reductases , Pyrenes , Humans , Aldo-Keto Reductases/chemistry , Aldo-Keto Reductases/metabolism , Amines , Pyrenes/chemistry
17.
Article in English | MEDLINE | ID: mdl-36231826

ABSTRACT

AIM: 8-iso-prostaglandin F2α is a biomarker of lipid peroxidation, and one of the most commonly used measures of oxidative stress. It is an established biomarker of lung cancer risk. It is commonly measured by enzyme-linked immunosorbent assay. Given its importance, we developed a stable isotope dilution UPLC-tandem mass spectrometric method for the rapid determination of 8-isoprostane in blood. METHODS: We tested the discriminatory capability of the method in 49 lung cancer patients, 55 benign lung nodule patients detected by chest X-ray, and 41 patients with chronic obstructive pulmonary disease (COPD) or asthma. RESULTS: Significant differences were found in mean 8-isoprostane levels between the three groups (p = 0.027), and post-hoc tests found higher levels in the lung cancer patients than in patients with benign nodules (p = 0.032) and COPD/asthma (p = 0.014). The receiving operating characteristic area under the curve (AUC) was 0.69 for differentiating the lung cancer group from the benign nodule group, and 0.7 for differentiating from the COPD/asthma group. CONCLUSIONS: The UPLC-MS/MS-based method is an efficient analytical tool for measuring 8-isoprostane plasma concentrations. The results suggest exploring its utility as a marker for early lung cancer screening.


Subject(s)
Asthma , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Biomarkers , Case-Control Studies , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Dinoprost/analogs & derivatives , Early Detection of Cancer , Humans , Isotopes , Lung Neoplasms/diagnosis , Oxidative Stress , Tandem Mass Spectrometry/methods
18.
Transl Lung Cancer Res ; 11(7): 1268-1278, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35958326

ABSTRACT

Background: Previous studies of peripheral blood leukocyte mitochondrial DNA (mtDNA) content and risk of lung cancer have yielded inconsistent results, and no studies have evaluated the association between mtDNA content and post-resection lung cancer outcomes. Methods: Using a case-control study design, we evaluated the association between mtDNA content and risk of lung cancer in 465 cases and 378 controls. We also evaluated the association between mtDNA content and survival in 189 cases with surgically resected non-small cell lung cancer (NSCLC). Relative mtDNA content was measured using a quantitative real-time polymerase chain reaction (PCR) assay in peripheral blood genomic DNA. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) using multivariable logistic regression, adjusting for age, gender, race, and smoking history. Results: mtDNA content was lower in cases compared to controls, with medians of 1.26 [interquartile range (IQR), 0.98-1.70)] and 1.79 (IQR, 1.34-2.10; P<0.001), respectively. Compared to the quartile of subjects with the highest mtDNA content, there was significantly higher likelihood of lung cancer in the second lowest quartile (OR 3.44; 95% CI: 2.06-5.75) and the lowest quartile (OR 6.36; 95% CI: 3.86-10.47). In patients with resected NSCLC, there was no association between lower mtDNA content and recurrence-free survival (RFS) [hazard ratio (HR) 0.89; 95% CI: 0.47-1.66] or overall survival (OS) (HR 0.71; 95% CI: 0.35-1.46). Conclusions: Thus, our results counter previous studies and find that lower mtDNA content is associated with lung cancer risk. Our results suggest that mtDNA content could potentially serve as a risk biomarker, but is not associated with survival outcomes in NSCLC.

19.
Chem Res Toxicol ; 35(10): 1747-1765, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36044734

ABSTRACT

Nitro group containing xenobiotics include drugs, cancer chemotherapeutic agents, carcinogens (e.g., nitroarenes and aristolochic acid) and explosives. The nitro group undergoes a six-electron reduction to form sequentially the nitroso-, N-hydroxylamino- and amino-functional groups. These reactions are catalyzed by nitroreductases which, rather than being enzymes with this sole function, are enzymes hijacked for their propensity to donate electrons to the nitro group either one at a time via a radical mechanism or two at time via the equivalent of a hydride transfer. These enzymes include: NADPH-dependent flavoenzymes (NADPH: P450 oxidoreductase, NAD(P)H-quinone oxidoreductase), P450 enzymes, oxidases (aldehyde oxidase, xanthine oxidase) and aldo-keto reductases. The hydroxylamino group once formed can undergo conjugation reactions with acetate or sulfate catalyzed by N-acetyltransferases or sulfotransferases, respectively, leading to the formation of intermediates containing a good leaving group which in turn can generate a nitrenium or carbenium ion for covalent DNA adduct formation. The intermediates in the reduction sequence are also prone to oxidation and produce reactive oxygen species. As a consequence, many nitro-containing xenobiotics can be genotoxic either by forming stable covalent adducts or by oxidatively damaging DNA. This review will focus on the general chemistry of nitroreduction, the enzymes responsible, the reduction of xenobiotic substrates, the regulation of nitroreductases, the ability of nitrocompounds to form DNA adducts and act as mutagens as well as some future directions.


Subject(s)
Environmental Pollutants , Explosive Agents , Acetyltransferases/metabolism , Aldehydes , Aldo-Keto Reductases/metabolism , Carcinogens , DNA Adducts , Metabolic Networks and Pathways , Mutagens/metabolism , NAD/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NADP/metabolism , Quinones , Reactive Oxygen Species , Sulfates , Sulfotransferases/metabolism , Xanthine Oxidase/metabolism , Xenobiotics
20.
Chem Res Toxicol ; 35(8): 1370-1382, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35819939

ABSTRACT

ComptoxAI is a new data infrastructure for computational and artificial intelligence research in predictive toxicology. Here, we describe and showcase ComptoxAI's graph-structured knowledge base in the context of three real-world use-cases, demonstrating that it can rapidly answer complex questions about toxicology that are infeasible using previous technologies and data resources. These use-cases each demonstrate a tool for information retrieval from the knowledge base being used to solve a specific task: The "shortest path" module is used to identify mechanistic links between perfluorooctanoic acid (PFOA) exposure and nonalcoholic fatty liver disease; the "expand network" module identifies communities that are linked to dioxin toxicity; and the quantitative structure-activity relationship (QSAR) dataset generator predicts pregnane X receptor agonism in a set of 4,021 pesticide ingredients. The contents of ComptoxAI's source data are rigorously aggregated from a diverse array of public third-party databases, and ComptoxAI is designed as a free, public, and open-source toolkit to enable diverse classes of users including biomedical researchers, public health and regulatory officials, and the general public to predict toxicology of unknowns and modes of action.


Subject(s)
Computational Biology , Toxicology , Artificial Intelligence , Databases, Factual , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL