Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 14(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38541744

ABSTRACT

Lycium barbarum, known as goji berry or wolfberry, is a fruit long associated with health benefits, showing a plethora of effects ranging from antioxidant, anticancer, anti-inflammatory, and immunomodulatory effects. Its potential is attributed to the significant presence of polysaccharides, glycopeptides, polyphenols, flavonoids, carotenoids, and their derivatives. These compounds effectively counteract the action of free radicals, positively influencing cellular balance and intracellular signaling, contributing to overall cell health and function acting on multiple molecular pathways. Several fractions extracted from goji berries demonstrate antitumor properties, particularly effective against breast cancer, without showing cytotoxic effects on normal human cells. Hence, the review explored the fundamental traits of bioactive elements in Lycium barbarum and their potential in cancer treatment and, specifically, breast cancer. It focused on elucidating wolfberry's influenced biochemical pathways, its synergism with anticancer drugs, and its potential to alleviate the side effects associated with existing cancer treatments.

2.
Eur J Med Chem ; 269: 116298, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38493727

ABSTRACT

The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.


Subject(s)
Cannabinoids , Receptor, Cannabinoid, CB2 , Mice , Animals , Pyrroles/pharmacology , Cannabinoids/pharmacology , Neurotransmitter Agents/pharmacology , Scopolamine Derivatives , Cannabinoid Receptor Agonists/pharmacology , Receptor, Cannabinoid, CB1
3.
Food Chem ; 444: 138684, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38359701

ABSTRACT

A research platform for food authentication was set up by combining stable isotope ratio analysis, metabolomics by gas and liquid mass-spectrometry and NMR investigations, chemometric analyses for food excellences. This multi-analytical approach was tested on samples of elephant garlic (Allium ampeloprasum L.), a species belonging to the same genus of common garlic (Allium ampeloprasum L.), mainly produced in southern Tuscany-(Allium ampeloprasum). The isotopic composition allowed the product to be geographically characterized. Flavonoids, like (+)-catechin, cinnamic acids, quercetin glycosides were identified. The samples showed also a significant amount of dipeptides, sulphur-containing metabolites and glutathione, the latter of which could be considered a molecular marker of the analyzed elephant garlic. For nutraceutical profiling to reach quality labels, extracts were investigated in specific biological assays, displaying interesting vasorelaxant properties in rat aorta by mediating nitric oxide release from the endothelium and exhibited positive inotropic and negative chronotropic effects in rat perfused heart.


Subject(s)
Allium , Garlic , Animals , Rats , Garlic/chemistry , Allium/chemistry , Onions/chemistry , Antioxidants/analysis , Dietary Supplements , Italy
4.
Eur J Med Chem ; 266: 116128, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38232463

ABSTRACT

In this paper we present the design, synthesis, and biological evaluation of a new series of peptidomimetics acting as potent anti-SARS-CoV-2 agents. Starting from our previously described Main Protease (MPro) and Papain Like Protease (PLPro) dual inhibitor, CV11, here we disclose its high inhibitory activity against cathepsin L (CTSL) (IC50 = 19.80 ± 4.44 nM), an emerging target in SARS-CoV-2 infection machinery. An in silico design, inspired by the structure of CV11, led to the development of a library of peptidomimetics showing interesting activities against CTSL and Mpro, allowing us to trace the chemical requirements for the binding to both enzymes. The screening in Vero cells infected with 5 different SARS-CoV-2 variants of concerns, highlighted sub-micromolar activities for most of the synthesized compounds (13, 15, 16, 17 and 31) in agreement with the enzymatic inhibition assays results. The compounds showed lack of activity against several different RNA viruses except for the 229E and OC43 human coronavirus strains, also characterized by a cathepsin-L dependent release into the host cells. The most promising derivatives were also evaluated for their chemical and metabolic in-vitro stability, with derivatives 15 and 17 showing a suitable profile for further preclinical characterization.


Subject(s)
COVID-19 , Peptidomimetics , Chlorocebus aethiops , Humans , Animals , Cathepsin L , SARS-CoV-2 , Peptidomimetics/pharmacology , Protease Inhibitors/pharmacology , Vero Cells , Peptide Hydrolases , Antiviral Agents/pharmacology , Molecular Docking Simulation
5.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069237

ABSTRACT

Nowadays, there is considerable attention toward the use of food waste from food processing as possible sources of compounds with health properties, such as anticancer activity. An example is tomato processing, which is responsible for generating a remarkable amount of waste (leaves, peel, seeds). Therefore, our goal was to evaluate the potential anticancer property of tomato extracts, in particular "Datterino" tomato (DT) and "Piccadilly" tomato (PT), and to study their phytochemical composition. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) results showed that these extracts are rich in alkaloids, flavonoids, fatty acids, lipids, and terpenes. Furthermore, their potential anticancer activity was evaluated in vitro by MTT assay. In particular, the percentage of cell viability was assessed in olfactory ensheathing cells (OECs), a particular glial cell type of the olfactory system, and in SH-SY5Y, a neuroblastoma cell line. All extracts (aqueous and ethanolic) did not lead to any significant change in the percentage of cell viability on OECs when compared with the control. Instead, in SH-SY5Y we observed a significant decrease in the percentage of cell viability, confirming their potential anticancer activity; this was more evident for the ethanolic extracts. In conclusion, tomato leaves extracts could be regarded as a valuable source of bioactive compounds, suitable for various applications in the food, nutraceutical, and pharmaceutical fields.


Subject(s)
Alkaloids , Neuroblastoma , Refuse Disposal , Solanum lycopersicum , Humans , Food Loss and Waste , Cell Survival , Neuroblastoma/drug therapy , Alkaloids/chemistry , Plant Extracts/chemistry , Steroids/analysis , Seeds/chemistry
6.
Pharmaceutics ; 15(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004552

ABSTRACT

Tomato by-products represent a good source of phytochemical compounds with health properties, such as the steroidal glycoalkaloid α-tomatine (α-TM) and its aglycone tomatidine (TD). Both molecules have numerous beneficial properties, such as potential anticancer activity. Unfortunately, their therapeutic application is limited due to stability and bioavailability issues. Therefore, a valid strategy seems to be their encapsulation into Solid Lipid Nanoparticles (SLN). The nanoformulations containing α-TM (α-TM-SLN) and TD (TD-SLN) were prepared by solvent-diffusion technique and subsequently characterized in terms of technological parameters (particle size, polydispersity index, zeta potential, microscopy, and calorimetric studies). To assess the effect of α-TM and TD on the percentage of cellular viability in Olfactory Ensheathing Cells (OECs), a peculiar glial cell type of the olfactory system used as normal cells, and in SH-SY5Y, a neuroblastoma cancer cell line, an MTT test was performed. In addition, the effects of empty, α-TM-SLN, and TD-SLN were tested. Our results show that the treatment of OECs with blank-SLN, free α-TM (0.25 µg/mL), and TD (0.50 µg/mL) did not induce any significant change in the percentage of cell viability when compared with the control. In contrast, in SH-SY5Y-treated cells, a significant decrease in the percentage of cell viability when compared with the control was found. In particular, the effect appeared more evident when SH-SY5Y cells were exposed to α-TM-SLN and TD-SLN. No significant effect in blank-SLN-treated SH-SY5T cells was observed. Therefore, SLN is a promising approach for the delivery of α-TM and TD.

7.
Sci Rep ; 13(1): 14923, 2023 09 10.
Article in English | MEDLINE | ID: mdl-37691048

ABSTRACT

Many studies have explored the extraction of bioactive compounds from different onion solid wastes, such as bulb, skin, and peel. However, onion leaves have received limited attention despite their potential as a valuable source of nutraceutical compounds. This study aimed to valorise, for the first time, the agricultural waste in the form of spring onion leaves (CN, Cipollotto Nocerino) to obtain antioxidant-rich polyphenolic extracts. A Box-Behnken design (BBD) was used to assess the impact of microwave-assisted extraction (MAE) variables (temperature, time, extraction volume, and ethanol concentration) on total polyphenol content (TPC) measured by Folin-Ciocalteu method and the antioxidant power determined by FRAP assay. Response surface methodology (RSM) was applied, and regression equations, analysis of variance, and 3D response curves were developed. Our results highlighted that the TPC values range from 0.76 to 1.43 mg GAE g-1 dw, while the FRAP values range from 8.25 to 14.80 mmol Fe(II)E g-1 dw. The optimal extraction conditions predicted by the model were 60 °C, 22 min, ethanol concentration 51% (v/v), and solvent volume 11 mL. These conditions resulted in TPC and FRAP values of 1.35 mg GAE g-1 dw and 14.02 mmol Fe(II)E g-1 dw, respectively. Furthermore, the extract obtained under optimized conditions was characterized by UHPLC-ESI-Orbitrap-MS analysis. LC/MS-MS platform allowed us to tentatively identify various compounds belonging to the class of flavonoids, saponins, fatty acids, and lipids. Finally, the ability of CN optimal extract to inhibit the intracellular reactive oxygen species (ROS) release in a hepatocarcinoma cell line using an H2O2-induced oxidative stress model, was evaluated. The results highlighted the potential of CN extract as a valuable source of polyphenols with significant antioxidant properties, suitable for various applications in the food and pharmaceutical industries.


Subject(s)
Biphenyl Compounds , Onions , Picrates , Plant Leaves , Onions/chemistry , Plant Leaves/chemistry , Plant Extracts/chemistry , Solid Waste , Biphenyl Compounds/isolation & purification , Picrates/isolation & purification , Microwaves , Hep G2 Cells , Humans , Green Chemistry Technology
8.
Antioxidants (Basel) ; 12(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37627616

ABSTRACT

We here investigated the anti-inflammatory activity of a polymethoxylated flavone-containing fraction (PMFF) from Citrus sinensis and of a prenylflavonoid-containing one (PFF) from Humulus lupulus, either alone or in combination (MIX). To this end, an in vitro model of inflammatory bowel disease (IBD), consisting of differentiated, interleukin (IL)-1ß-stimulated Caco-2 cells, was employed. We demonstrated that non-cytotoxic concentrations of either PMFF or PFF or MIX reduced nitric oxide (NO) production while PFF and MIX, but not PMFF, also inhibited prostaglandin E2 release. Coherently, MIX suppressed both inducible NO synthase and cyclooxygenase-2 over-expression besides NF-κB activation. Moreover, MIX increased nuclear factor erythroid 2-related factor 2 (Nrf2) activation, heme oxygenase-1 expression, restoring GSH and reactive oxygen and nitrogen species (RONs) levels. Remarkably, these effects with MIX were stronger than those produced by PMFF or PFF alone. Noteworthy, nobiletin (NOB) and xanthohumol (XTM), two of the most represented phytochemicals in PMFF and PFF, respectively, synergistically inhibited RONs production. Overall, our results demonstrate that MIX enhances the anti-inflammatory and anti-oxidative effects of the individual fractions in a model of IBD, via a mechanism involving modulation of NF-κB and Nrf2 signalling. Synergistic interactions between NOB and XTM emerge as a relevant aspect underlying this evidence.

9.
J Med Chem ; 66(13): 9201-9222, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37334504

ABSTRACT

Acute pancreatitis (AP) is a potentially life-threatening illness characterized by an exacerbated inflammatory response with limited options for pharmacological treatment. Here, we describe the rational development of a library of soluble epoxide hydrolase (sEH) inhibitors for the treatment of AP. Synthesized compounds were screened in vitro for their sEH inhibitory potency and selectivity, and the results were rationalized by means of molecular modeling studies. The most potent compounds were studied in vitro for their pharmacokinetic profile, where compound 28 emerged as a promising lead. In fact, compound 28 demonstrated a remarkable in vivo efficacy in reducing the inflammatory damage in cerulein-induced AP in mice. Targeted metabololipidomic analysis further substantiated sEH inhibition as a molecular mechanism of the compound underlying anti-AP activity in vivo. Finally, pharmacokinetic assessment demonstrated a suitable profile of 28 in vivo. Collectively, compound 28 displays strong effectiveness as sEH inhibitor with potential for pharmacological AP treatment.


Subject(s)
Pancreatitis , Mice , Animals , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Epoxide Hydrolases , Acute Disease , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacokinetics
10.
Antioxidants (Basel) ; 12(3)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36978952

ABSTRACT

Nutrition has a significant effect and a crucial role in disease prevention. Low consumption of fruit and vegetables and a sedentary lifestyle are closely related with the onset and development of many types of cancer. Recently, nutraceuticals have gained much attention in cancer research due to their pleiotropic effects and relatively non-toxic behavior. In fact, although in the past there have been conflicting results on the role of some antioxidant compounds as allies against cancer, numerous recent clinical studies highlight the efficacy of dietary phytochemicals in the prevention and treatment of cancer. However, further investigation is necessary to gain a deeper understanding of the potential anticancer capacities of dietary phytochemicals as well as the mechanisms of their action. Therefore, this review examined the current literature on the key properties of the bioactive components present in the diet, such as carotenoids, polyphenols, and antioxidant compounds, as well as their use in cancer therapy. The review focused on potential chemopreventive properties, evaluating their synergistic effects with anticancer drugs and, consequently, the side effects associated with current cancer treatments.

11.
Cell Biol Int ; 47(3): 634-647, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36378586

ABSTRACT

Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Given the ability of tumors to interfere with multiple or different molecular pathways to promote angiogenesis, there is an increasing need to therapeutically block tumor progression by targeting multiple antiangiogenic pathways. Natural polyphenols present health-protective properties, which are likely attributed to their ability to activate multiple pathways involved in inflammation, carcinogenesis, and angiogenesis. Recently, increased attention has been addressed to the ability of flavonoids, the most abundant polyphenols in the diet, to prevent cancer by suppressing angiogenesis. Here we investigate the mechanisms by which xanthohumol (the major prenylated flavonoid of the hop plant Humulus lupulus L.) and nobiletin (flavonoid from red-orange Citrus sinensis) can modulate the effects of Tumor Necrosis Factor-α (TNF-α) on human umbilical vein endothelial cells (HUVEC). The results reported in this paper show that xanthohumol and nobiletin pretreatment of HUVEC inhibits the effects induced by TNF-α on cell migration, invasion capability, and colon cancer cell adhesion on the endothelial monolayer. Moreover, the pretreatment reduces metalloproteinases and adhesion molecules' expression. Finally, our results highlight that xanthohumol and nobiletin can counteract the effects of TNF-α on angiogenesis and invasiveness, mainly through Vascular Endothelial Growth Factor and NF-κB pathways. Since angiogenesis plays an important pathological role in the progression of several diseases, our findings may provide clues for developing xanthohumol and nobiletin as therapeutic agents against angiogenesis-associated diseases.


Subject(s)
NF-kappa B , Neoplasms , Humans , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Flavonoids/pharmacology , Signal Transduction , Neoplasms/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Polyphenols/metabolism , Polyphenols/pharmacology
12.
J Cardiovasc Dev Dis ; 9(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36547420

ABSTRACT

Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.

13.
J Med Chem ; 65(21): 14456-14480, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36318728

ABSTRACT

The design of multitarget drugs represents a promising strategy in medicinal chemistry and seems particularly suitable for the discovery of anti-inflammatory drugs. Here, we describe the identification of an indoline-based compound inhibiting both 5-lipoxygenase (5-LOX) and soluble epoxide hydrolase (sEH). In silico analysis of an in-house library identified nine compounds as potential 5-LOX inhibitors. Enzymatic and cellular assays revealed the indoline derivative 43 as a notable 5-LOX inhibitor, guiding the design of new analogues. These compounds underwent extensive in vitro investigation revealing dual 5-LOX/sEH inhibitors, with 73 showing the most promising activity (IC50s of 0.41 ± 0.01 and 0.43 ± 0.10 µM for 5-LOX and sEH, respectively). When challenged in vivo in zymosan-induced peritonitis and experimental asthma in mice, compound 73 showed remarkable anti-inflammatory efficacy. These results pave the way for the rational design of 5-LOX/sEH dual inhibitors and for further investigation of their potential use as anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents , Epoxide Hydrolases , Mice , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Indoles/pharmacology , Indoles/therapeutic use , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/therapeutic use , Lipoxygenase Inhibitors/chemistry
14.
Biomedicines ; 10(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36009556

ABSTRACT

Parkinson's disease (PD) represents one of the most common neurodegenerative disorders, characterized by a dopamine (DA) deficiency in striatal synapses and misfolded toxic α-synuclein aggregates with concomitant cytotoxicity. In this regard, the misfolded proteins accumulation in neurodegenerative disorders induces a remarkable perturbations of endoplasmic reticulum (ER) homeostasis leading to persistent ER stress, which in turn, effects protein synthesis, modification, and folding quality control. A large body of evidence suggests that natural products target the ER stress signaling pathway, exerting a potential action in cancers, diabetes, cardiovascular and neurodegenerative diseases. This study aims to assess the neuroprotective effect of cocoa extract and its purified fractions against a cellular model of Parkinson's disease represented by 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma. Our findings demonstrate, for the first time, the ability of cocoa to specifically targets PERK sensor, with significant antioxidant and antiapoptotic activities as both crude and fractioning extracts. In addition, cocoa also showed antiapoptotic properties in 3D cell model and a notable ability to inhibit the accumulation of α-synuclein in 6-OHDA-induced cells. Overall, these results indicate that cocoa exerts neuroprotective effects suggesting a novel possible strategy to prevent or, at least, mitigate neurodegenerative disorders, such as PD.

15.
ChemMedChem ; 17(20): e202200343, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36040095

ABSTRACT

The bromodomain and extra-terminal (BET) family of proteins includes BRD2, BRD3, BRD4, and the testis-specific protein, BRDT, each containing two N-terminal tandem bromodomain (BRD) modules. Potent and selective inhibitors targeting the two bromodomains are required to elucidate their biological role(s), with potential clinical applications. In this study, we designed and synthesized a series of benzimidazole-6-sulfonamides starting from the azobenzene compounds MS436 (7 a) and MS611 (7 b) that exhibited preference for the first (BD1) over the second (BD2) BRD of BET family members. The most-promising compound (9 a) showed good binding potency and improved metabolic stability and selectivity towards BD1 with respect to the parent compounds.


Subject(s)
Nuclear Proteins , Sulfonamides , Male , Humans , Sulfonamides/pharmacology , Benzo(a)pyrene , Transcription Factors/metabolism , Imidazoles/pharmacology , Benzimidazoles/pharmacology , Cell Cycle Proteins/metabolism
16.
J Med Chem ; 65(16): 11340-11364, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35972998

ABSTRACT

Neuronal Kv7 channels represent important pharmacological targets for hyperexcitability disorders including epilepsy. Retigabine is the prototype Kv7 activator clinically approved for seizure treatment; however, severe side effects associated with long-term use have led to its market discontinuation. Building upon the recently described cryoEM structure of Kv7.2 complexed with retigabine and on previous structure-activity relationship studies, a small library of retigabine analogues has been designed, synthesized, and characterized for their Kv7 opening ability using both fluorescence- and electrophysiology-based assays. Among all tested compounds, 60 emerged as a potent and photochemically stable neuronal Kv7 channel activator. Compared to retigabine, compound 60 displayed a higher brain/plasma distribution ratio, a longer elimination half-life, and more potent and effective anticonvulsant effects in an acute seizure model in mice. Collectively, these data highlight compound 60 as a promising lead compound for the development of novel Kv7 activators for the treatment of hyperexcitability diseases.


Subject(s)
Anticonvulsants , KCNQ3 Potassium Channel , Animals , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Carbamates , KCNQ2 Potassium Channel , Mice , Phenylenediamines/chemistry , Phenylenediamines/pharmacology , Phenylenediamines/therapeutic use , Seizures/chemically induced , Seizures/drug therapy
17.
Antioxidants (Basel) ; 11(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35326088

ABSTRACT

Extra virgin olive oil (EVOO) is the typical source of fats in the Mediterranean diet. While fatty acids are essential for the EVOO nutraceutical properties, multiple biological activities are also due to the presence of polyphenols. In this work, autochthonous Tuscany EVOOs were chemically characterized and selected EVOO samples were extracted to obtain hydroalcoholic phytocomplexes, which were assayed to establish their anti-inflammatory and vasorelaxant properties. The polar extracts were characterized via 1H-NMR and UHPLC-HRMS to investigate the chemical composition and assayed in CaCo-2 cells exposed to glucose oxidase or rat aorta rings contracted by phenylephrine. Apigenin and luteolin were found as representative flavones; other components were pinoresinol, ligstroside, and oleuropein. The extracts showed anti-inflammatory and antioxidant properties via modulation of NF-κB and Nrf2 pathways, respectively, and good vasorelaxant activity, both in the presence and absence of an intact endothelium. In conclusion, this study evaluated the nutraceutical properties of autochthonous Tuscany EVOO cv., which showed promising anti-inflammatory and vasorelaxant effects.

18.
Foods ; 11(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35159586

ABSTRACT

Grain sorghum (Sorghum bicolor) is a gluten-free cereal grown around the world and is a food staple in semi-arid and subtropical regions. Sorghum is a diverse crop with a range of pericarp colour including white, various shades of red, and black, all of which show health-promoting properties as they are rich sources of antioxidants such as polyphenols, carotenoids, as well as micro- and macro-nutrients. This work examined the grain composition of three sorghum varieties possessing a range of pericarp colours (white, red, and black) grown in the Mediterranean region. To determine the nutritional quality independent of the contributions of phenolics, mineral and fatty acid content and composition were measured. Minor differences in both protein and carbohydrate were observed among varieties, and a higher fibre content was found in both the red and black varieties. A higher amount of total saturated fats was found in the white variety, while the black variety had a lower amount of total unsaturated and polyunsaturated fats than either the white or red varieties. Oleic, linoleic, and palmitic were the primary fatty acids in all three analysed sorghum varieties. Significant differences in mineral content were found among the samples with a greater amount of Mg, K, Al, Mn, Fe, Ni, Zn, Pb and U in both red and black than the white sorghum variety. The results show that sorghum whole grain flour made from grain with varying pericarp colours contains unique nutritional properties.

19.
Cancers (Basel) ; 13(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34439086

ABSTRACT

Colorectal cancer (CRC) mortality is mainly caused by patient refractoriness to common anti-cancer therapies and consequent metastasis formation. Besides, the notorious toxic side effects of chemotherapy are a concurrent obstacle to be tackled. Thus, new treatment approaches are needed to effectively improve patient outcomes. Compelling evidence demonstrated that cancer stem cells (CSCs) are responsible for treatment failure and relapse. New natural treatment approaches showed capabilities to selectively target the CSC subpopulation by rendering them targetable by standard cytotoxic compounds. Herein we show the anti-cancer properties of the polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively. The natural biofunctional fractions, singularly and in combination, reduced the cell viability of CRC stem cells (CR-CSCs) and synergized with 5-fluorouracil and oxaliplatin (FOX) chemotherapy. These phenomena were accompanied by a reduced S and G2/M phase of the cell cycle and upregulation of cell death-related genes. Notably, both phytoextracts in combination with FOX thwarted stemness features in CR-CSCs as demonstrated by the impaired clonogenic potential and decreased Wnt pathway activation. Extracts lowered the expression of CD44v6 and affected the expansion of metastatic CR-CSCs in patients refractory to chemotherapy. Together, this study highlights the importance of polymethoxyflavones and prenylflavonoids as natural remedies to aid oncological therapies.

20.
Antioxidants (Basel) ; 10(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809389

ABSTRACT

BACKGROUND: Arterial hypertension is the most important risk factor for cardiovascular diseases, myocardial infarction, heart failure, renal failure and peripheral vascular disease. In the last decade, milk-derived bioactive peptides have attracted attention for their beneficial cardiovascular properties. METHODS: Here, we combined in vitro chemical assay such as LC-MS/MS analysis of buffalo ice cream, ex vivo vascular studies evaluating endothelial and smooth muscle responses using pressure myograph, and translational assay testing in vivo the vascular actions of PG1 administration in murine models. RESULTS: We demonstrate that a novel buffalo ice-cream-derived pentapeptide "QKEPM", namely PG1, is a stable peptide that can be obtained at higher concentration after gastro-intestinal digestions (GID) of buffalo ice-cream (BIC). It owns potent vascular effect in counteract the effects of angiotensin II-evoked vasoconstriction and high blood pressure levels. Its effects are mediated by the inhibitory effect on AT1 receptor leading to a downregulation of p-ERK½/Rac1-GTP and consequent reduction of oxidative stress. CONCLUSIONS: These results strongly candidate PG1, as a novel bioactive peptide for the prevention and management of hypertension, thus expanding the armamentarium of preventive strategies aimed at reducing the incidence and progression of hypertension and its related cardiovascular complications.

SELECTION OF CITATIONS
SEARCH DETAIL
...