Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
NPJ Regen Med ; 8(1): 31, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328477

ABSTRACT

The young African turquoise killifish has a high regenerative capacity, but loses it with advancing age, adopting several aspects of the limited form of mammalian regeneration. We deployed a proteomic strategy to identify pathways that underpin the loss of regenerative power caused by aging. Cellular senescence stood out as a potential brake on successful neurorepair. We applied the senolytic cocktail Dasatinib and Quercetin (D + Q) to test clearance of chronic senescent cells from the aged killifish central nervous system (CNS) as well as rebooting the neurogenic output. Our results show that the entire aged killifish telencephalon holds a very high senescent cell burden, including the parenchyma and the neurogenic niches, which could be diminished by a short-term, late-onset D + Q treatment. Reactive proliferation of non-glial progenitors increased substantially and lead to restorative neurogenesis after traumatic brain injury. Our results provide a cellular mechanism for age-related regeneration resilience and a proof-of-concept of a potential therapy to revive the neurogenic potential in an already aged or diseased CNS.

2.
Front Cell Dev Biol ; 9: 720570, 2021.
Article in English | MEDLINE | ID: mdl-34604223

ABSTRACT

Bioactive peptides exhibit key roles in a wide variety of complex processes, such as regulation of body weight, learning, aging, and innate immune response. Next to the classical bioactive peptides, emerging from larger precursor proteins by specific proteolytic processing, a new class of peptides originating from small open reading frames (sORFs) have been recognized as important biological regulators. But their intrinsic properties, specific expression pattern and location on presumed non-coding regions have hindered the full characterization of the repertoire of bioactive peptides, despite their predominant role in various pathways. Although the development of peptidomics has offered the opportunity to study these peptides in vivo, it remains challenging to identify the full peptidome as the lack of cleavage enzyme specification and large search space complicates conventional database search approaches. In this study, we introduce a proteogenomics methodology using a new type of mass spectrometry instrument and the implementation of machine learning tools toward improved identification of potential bioactive peptides in the mouse brain. The application of trapped ion mobility spectrometry (tims) coupled to a time-of-flight mass analyzer (TOF) offers improved sensitivity, an enhanced peptide coverage, reduction in chemical noise and the reduced occurrence of chimeric spectra. Subsequent machine learning tools MS2PIP, predicting fragment ion intensities and DeepLC, predicting retention times, improve the database searching based on a large and comprehensive custom database containing both sORFs and alternative ORFs. Finally, the identification of peptides is further enhanced by applying the post-processing semi-supervised learning tool Percolator. Applying this workflow, the first peptidomics workflow combined with spectral intensity and retention time predictions, we identified a total of 167 predicted sORF-encoded peptides, of which 48 originating from presumed non-coding locations, next to 401 peptides from known neuropeptide precursors, linked to 66 annotated bioactive neuropeptides from within 22 different families. Additional PEAKS analysis expanded the pool of SEPs on presumed non-coding locations to 84, while an additional 204 peptides completed the list of peptides from neuropeptide precursors. Altogether, this study provides insights into a new robust pipeline that fuses technological advancements from different fields ensuring an improved coverage of the neuropeptidome in the mouse brain.

3.
Sci Rep ; 10(1): 16430, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009420

ABSTRACT

The hair bundle of cochlear hair cells is the site of auditory mechanoelectrical transduction. It is formed by three rows of stiff microvilli-like protrusions of graduated heights, the short, middle-sized, and tall stereocilia. In developing and mature sensory hair cells, stereocilia are connected to each other by various types of fibrous links. Two unconventional cadherins, protocadherin-15 (PCDH15) and cadherin-23 (CDH23), form the tip-links, whose tension gates the hair cell mechanoelectrical transduction channels. These proteins also form transient lateral links connecting neighboring stereocilia during hair bundle morphogenesis. The proteins involved in anchoring these diverse links to the stereocilia dense actin cytoskeleton remain largely unknown. We show that the long isoform of whirlin (L-whirlin), a PDZ domain-containing submembrane scaffold protein, is present at the tips of the tall stereocilia in mature hair cells, together with PCDH15 isoforms CD1 and CD2; L-whirlin localization to the ankle-link region in developing hair bundles moreover depends on the presence of PCDH15-CD1 also localizing there. We further demonstrate that L-whirlin binds to PCDH15 and CDH23 with moderate-to-high affinities in vitro. From these results, we suggest that L-whirlin is part of the molecular complexes bridging PCDH15-, and possibly CDH23-containing lateral links to the cytoskeleton in immature and mature stereocilia.


Subject(s)
Cadherins/metabolism , Cochlea/metabolism , Hair Cells, Auditory/metabolism , Membrane Proteins/metabolism , Protein Precursors/metabolism , Animals , Cadherin Related Proteins , Cell Differentiation/physiology , Female , Male , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning/methods , Protein Isoforms/metabolism , Stereocilia/metabolism
4.
J Mol Biol ; 432(22): 5920-5937, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32971111

ABSTRACT

Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.


Subject(s)
Hair Cells, Auditory/cytology , Hair Cells, Auditory/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , PDZ Domains/physiology , Protein Binding , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , Guanylate Kinases/metabolism , Humans , Myosins/metabolism , Proteins , Stereocilia/metabolism
5.
J Clin Invest ; 128(8): 3382-3401, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29985171

ABSTRACT

Clarin-1, a tetraspan-like membrane protein defective in Usher syndrome type IIIA (USH3A), is essential for hair bundle morphogenesis in auditory hair cells. We report a new synaptic role for clarin-1 in mouse auditory hair cells elucidated by characterization of Clrn1 total (Clrn1ex4-/-) and postnatal hair cell-specific conditional (Clrn1ex4fl/fl Myo15-Cre+/-) knockout mice. Clrn1ex4-/- mice were profoundly deaf, whereas Clrn1ex4fl/fl Myo15-Cre+/- mice displayed progressive increases in hearing thresholds, with, initially, normal otoacoustic emissions and hair bundle morphology. Inner hair cell (IHC) patch-clamp recordings for the 2 mutant mice revealed defective exocytosis and a disorganization of synaptic F-actin and CaV1.3 Ca2+ channels, indicative of a synaptopathy. Postsynaptic defects were also observed, with an abnormally broad distribution of AMPA receptors associated with a loss of afferent dendrites and defective electrically evoked auditory brainstem responses. Protein-protein interaction assays revealed interactions between clarin-1 and the synaptic CaV1.3 Ca2+ channel complex via the Cavß2 auxiliary subunit and the PDZ domain-containing protein harmonin (defective in Usher syndrome type IC). Cochlear gene therapy in vivo, through adeno-associated virus-mediated Clrn1 transfer into hair cells, prevented the synaptic defects and durably improved hearing in Clrn1ex4fl/fl Myo15-Cre+/- mice. Our results identify clarin-1 as a key organizer of IHC ribbon synapses, and suggest new treatment possibilities for USH3A patients.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Hair Cells, Auditory/metabolism , Membrane Proteins , Synapses , Usher Syndromes , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cytoskeletal Proteins , Dependovirus , Disease Models, Animal , Hair Cells, Auditory/pathology , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mice , Mice, Knockout , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Usher Syndromes/genetics , Usher Syndromes/metabolism , Usher Syndromes/pathology , Usher Syndromes/therapy
6.
EMBO Mol Med ; 9(8): 1088-1099, 2017 08.
Article in English | MEDLINE | ID: mdl-28588032

ABSTRACT

γ-Secretases are a family of intramembrane cleaving aspartyl proteases and important drug targets in Alzheimer's disease. Here, we generated mice deficient for all γ-secretases in the pyramidal neurons of the postnatal forebrain by deleting the three anterior pharynx defective 1 (Aph1) subunits (Aph1abc cKO Cre+). The mice show progressive cortical atrophy, neuronal loss, and gliosis. Interestingly, this is associated with more than 10-fold accumulation of membrane-bound fragments of App, Aplp1, Nrg1, and Dcc, while other known substrates of γ-secretase such as Aplp2, Lrp1, and Sdc3 accumulate to lesser extents. Despite numerous reports linking neurodegeneration to accumulation of membrane-bound App fragments, deletion of App expression in the combined Aph1 knockout does not rescue this phenotype. Importantly, knockout of only Aph1a- or Aph1bc-secretases causes limited and differential accumulation of substrates. This was not associated with neurodegeneration. Further development of selective Aph1-γ-secretase inhibitors should be considered for treatment of Alzheimer's disease.


Subject(s)
Endopeptidases/deficiency , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Prosencephalon/enzymology , Prosencephalon/pathology , Animals , Blotting, Western , Disease Models, Animal , Histocytochemistry , Immunohistochemistry , Membrane Proteins , Mice , Mice, Knockout , Microscopy, Fluorescence
7.
FEBS Lett ; 591(15): 2299-2310, 2017 08.
Article in English | MEDLINE | ID: mdl-28653419

ABSTRACT

Mutations in the gene encoding harmonin, a multi-PDZ domain-containing submembrane protein, cause Usher syndrome type 1 (congenital deafness and balance disorder, and early-onset sight loss). The structure of the protein and biological activities of its three different classes of splice isoforms (a, b, and c) remain poorly understood. Combining biochemical and biophysical analyses, we show that harmonin-a1 can switch between open and closed conformations through intramolecular binding of its C-terminal PDZ-binding motif to its N-terminal supramodule NTD-PDZ1 and through a flexible PDZ2-PDZ3 linker. This conformational switch presumably extends to most harmonin isoforms, and it is expected to have an impact on the interaction with some binding partners, as shown here for cadherin-related 23, another component of the hair cell mechanoelectrical transduction machinery.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cadherins/metabolism , Cell Cycle Proteins , Circular Dichroism , Cytoskeletal Proteins , HEK293 Cells , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Domains , Scattering, Small Angle , Signal Transduction , Surface Plasmon Resonance , X-Ray Diffraction
8.
Hear Res ; 330(Pt A): 10-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26049141

ABSTRACT

Sound waves are converted into electrical signals by a process of mechano-electrical transduction (MET), which takes place in the hair bundle of cochlear hair cells. In response to the mechanical stimulus of the hair bundle, the tip-links, key components of the MET machinery, are tensioned and the MET channels open, which results in the generation of the cell receptor potential. Tip-links are composed of cadherin-23 (Cdh23) and protocadherin-15 (Pcdh15), both non-conventional cadherins, that form the upper and the lower part of these links, respectively. Here, we review the various Pcdh15 isoforms present in the organ of Corti, their localization in the auditory hair bundles, their involvement in the molecular complex forming the tip-link, and their interactions with transmembrane molecules that are components of the lower MET machinery.


Subject(s)
Cadherins/physiology , Hair Cells, Auditory/metabolism , Hearing/physiology , Mechanotransduction, Cellular/physiology , Alternative Splicing , Animals , Cadherin Related Proteins , Cadherins/chemistry , Humans , Mice , Mice, Knockout , Organ of Corti/metabolism , Protein Multimerization , Protein Precursors/chemistry , Protein Precursors/physiology
9.
EMBO Mol Med ; 6(7): 984-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24940003

ABSTRACT

Protocadherin-15 (Pcdh15) is a component of the tip-links, the extracellular filaments that gate hair cell mechano-electrical transduction channels in the inner ear. There are three Pcdh15 splice isoforms (CD1, CD2 and CD3), which only differ by their cytoplasmic domains; they are thought to function redundantly in mechano-electrical transduction during hair-bundle development, but whether any of these isoforms composes the tip-link in mature hair cells remains unknown. By immunolabelling and both morphological and electrophysiological analyses of post-natal hair cell-specific conditional knockout mice (Pcdh15ex38-fl/ex38-fl Myo15-cre+/-) that lose only this isoform after normal hair-bundle development, we show that Pcdh15-CD2 is an essential component of tip-links in mature auditory hair cells. The finding, in the homozygous or compound heterozygous state, of a PCDH15 frameshift mutation (p.P1515Tfs*4) that affects only Pcdh15-CD2, in profoundly deaf children from two unrelated families, extends this conclusion to humans. These results provide key information for identification of new components of the mature auditory mechano-electrical transduction machinery. This will also serve as a basis for the development of gene therapy for deafness caused by PCDH15 defects.


Subject(s)
Cadherins/genetics , Deafness/genetics , Hair Cells, Auditory/cytology , Protein Precursors/genetics , Animals , Cadherin Related Proteins , Cadherins/analysis , Child , Female , Frameshift Mutation , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/ultrastructure , Humans , Male , Mechanotransduction, Cellular , Mice , Mice, Knockout , Mutation , Protein Isoforms/analysis , Protein Isoforms/genetics , Protein Precursors/analysis
10.
J Cell Biol ; 199(2): 381-99, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23045546

ABSTRACT

The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.


Subject(s)
Intercellular Junctions/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/ultrastructure , Usher Syndromes/metabolism , Animals , Anura , Cadherin Related Proteins , Cadherins/deficiency , Cadherins/genetics , Cadherins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cytoskeletal Proteins , Humans , Intercellular Junctions/ultrastructure , Macaca fascicularis , Mice , Myosin VIIa , Myosins/deficiency , Myosins/genetics , Myosins/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Precursors/deficiency , Protein Precursors/genetics , Protein Precursors/metabolism , Retina/metabolism , Retina/ultrastructure , Retinal Dystrophies/pathology , Swine , Usher Syndromes/pathology
11.
Proc Natl Acad Sci U S A ; 108(14): 5825-30, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21436032

ABSTRACT

The mechanotransducer channels of auditory hair cells are gated by tip-links, oblique filaments that interconnect the stereocilia of the hair bundle. Tip-links stretch from the tips of stereocilia in the short and middle rows to the sides of neighboring, taller stereocilia. They are made of cadherin-23 and protocadherin-15, products of the Usher syndrome type 1 genes USH1D and USH1F, respectively. In this study we address the role of sans, a putative scaffold protein and product of the USH1G gene. In Ush1g(-/-) mice, the cohesion of stereocilia is disrupted, and both the amplitude and the sensitivity of the transduction currents are reduced. In Ush1g(fl/fl)Myo15-cre(+/-) mice, the loss of sans occurs postnatally and the stereocilia remain cohesive. In these mice, there is a decrease in the amplitude of the total transducer current with no loss in sensitivity, and the tips of the stereocilia in the short and middle rows lose their prolate shape, features that can be attributed to the loss of tip-links. Furthermore, stereocilia from these rows undergo a dramatic reduction in length, suggesting that the mechanotransduction machinery has a positive effect on F-actin polymerization. Sans interacts with the cytoplasmic domains of cadherin-23 and protocadherin-15 in vitro and is absent from the hair bundle in mice defective for either of the two cadherins. Because sans localizes mainly to the tips of short- and middle-row stereocilia in vivo, we conclude that it belongs to a molecular complex at the lower end of the tip-link and plays a critical role in the maintenance of this link.


Subject(s)
Actins/metabolism , Hair Cells, Auditory/metabolism , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Analysis of Variance , Animals , Cadherin Related Proteins , Cadherins/metabolism , Cilia/metabolism , Electrophysiology , Fluorescent Antibody Technique , Genetic Vectors/genetics , Hair Cells, Auditory/ultrastructure , Immunohistochemistry , Mice , Mice, Knockout , Microscopy, Electron, Scanning , Nerve Tissue Proteins/genetics , Polymerization , Protein Precursors/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...