Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Photodermatol Photoimmunol Photomed ; 39(3): 226-234, 2023 May.
Article in English | MEDLINE | ID: mdl-35968606

ABSTRACT

BACKGROUND: Lysine-specific histone demethylase 1 (KDM1A/LSD1) regulates multiple cellular functions, including cellular proliferation, differentiation, and DNA repair. KDM1A is overexpressed in squamous cell carcinoma of the skin and inhibition of KDM1A can suppress cutaneous carcinogenesis. Despite the role of KDM1A in skin and DNA repair, the effect of KDM1A inhibition on cellular ultraviolet (UV) response has not been studied. METHODS: The ability of KDM1A inhibitor bizine to modify cell death after UVA and UVB exposure was tested in normal human keratinocytes and melanocytes, HaCaT, and FaDu cell lines. KDM1A was also downregulated using shRNA and inhibited by phenelzine in HaCaT and FaDu cells to confirm the role of KDM1A in UVA response. In addition, cellular reactive oxygen species (ROS) changes were assessed by a lipid-soluble fluorescent indicator of lipid oxidation, and ROS-related gene regulation using qPCR. During photodynamic therapy (PDT) studies HaCaT and FaDu cells were treated with aminolaevulinic acid (5-ALA) or HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) sodium and irradiated with 0-8 J/cm2 red LED light. RESULTS: KDM1A inhibition sensitized cells to UVA radiation-induced cell death but not to UVB. KDM1A inhibition increased ROS generation as detected by increased lipid peroxidation and the upregulation of ROS-responsive genes. The effectiveness of both ALA and HPPH PDT significantly improved in vitro in HaCaT and FaDu cells after KDM1A inhibition. CONCLUSION: KDM1A is a regulator of cellular UV response and KDM1A inhibition can improve PDT efficacy.


Subject(s)
Histone Demethylases , Photochemotherapy , Skin , Humans , Aminolevulinic Acid/pharmacology , Histone Demethylases/metabolism , Histone Demethylases/pharmacology , Keratinocytes/metabolism , Lipids/pharmacology , Reactive Oxygen Species/metabolism , Skin/metabolism , Ultraviolet Rays/adverse effects
2.
Biomolecules ; 10(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33317162

ABSTRACT

This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.


Subject(s)
Breast Neoplasms/diagnostic imaging , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/chemistry , Nanoparticles/chemistry , Optical Imaging/methods , Acrylic Resins/chemistry , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbocyanines/chemistry , Carbocyanines/metabolism , Cell Line, Tumor , Female , Fibroblasts/metabolism , Fibrosarcoma/pathology , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Folic Acid/metabolism , Glycoconjugates/chemistry , Glycoconjugates/metabolism , Heterografts , Humans , Infrared Rays , KB Cells , Mice , Mice, Nude
3.
J Photochem Photobiol B ; 211: 111998, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32862090

ABSTRACT

Herein we report the positron emission tomography (PET) imaging potential of a 124I-labeled radiopharmaceutical (PET-ONCO). In tumored mice, it shows high uptake in a variety of tumors: brain (GL261, U87), Colon (Colon26), lung (Lewis lung), breast (4 T1), bladder (UMUC3), pancreas (PANC-1) implanted in mice. This agent also shows promise for imaging associated metastatic disease (breast to lung, to bone). Interestingly, the iodinated compound derived from chlorophyll-a, in combination with the corresponding 124I-analog, can serve as a dual imaging agent (PET/fluorescence, complimentary to each other), with an option of photodynamic therapy (PDT). In contrast to Fluorine-18 (half-life 110 min), the Iodine-124 radionuclide has a physical half-life of roughly 4 days. Thus, unlike 18F-FDG, PET-ONCO can be transported longer distances. While the time for optimal tumor-uptake was observed at 24 h, improved tumor contrasts of both primary and metastasis were obtained at 48 and 72 h post- injection (i. v.) of PET-ONCO. In both mice and rats at a single dose study, PET-ONCO did not show any organ toxicity.


Subject(s)
Chlorophyll A/chemistry , Indicators and Reagents/chemistry , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Animals , Biological Transport , Chlorophyll A/metabolism , Female , Fluorine Radioisotopes/chemistry , Humans , Iodine Radioisotopes/chemistry , Male , Mice, Inbred BALB C , Optical Imaging , Photochemotherapy , Porphyrins/chemistry , Positron-Emission Tomography , Rats, Sprague-Dawley , Time Factors
4.
Photochem Photobiol ; 96(3): 625-635, 2020 05.
Article in English | MEDLINE | ID: mdl-31738460

ABSTRACT

To determine the impact of delivery vehicles in photosensitizing efficacy of HPPH, a hydrophobic photosensitizer was dissolved in various formulations: 1% Tween 80/5% dextrose, Pluronic P-123 and Pluronic F-127 in 0.5%, 1% and 2% phosphate buffer solutions (PBS). HPPH was also conjugated to Pluronic F-127, and the resulting conjugate (PL-20) was formulated in PBS. Among the different delivery vehicles, only Pluronic P-123 displayed significant vehicle cytotoxicity, whereas Pluronic F127 was nontoxic. Compared to PL-20, HPPH formulated in Tween80 and Pluronic F-127 showed higher cell-uptake, but lower long-term retention in Colon26 cell compared to PL-20. The higher retention of PL-20 was similarly observed during in vivo uptake with BALB/c mice baring Ct26 tumors. In contrast to the in vitro uptake experiments, PL-20 showed slightly higher uptake compared to HPPH formulated in Tween or Pluronic-F127. A significant difference in pharmacokinetic profile was also observed between the HPPH-Pluronic formulation and PL-20. Under similar in vivo treatment parameters (drug dose 0.47 µmol kg-1 , light dose: 135 J cm-2 at 24 h post-injection of PS), HPPH formulated either in Tween or Pluronic F-127 formulation showed similar in vivo PDT efficacy (20-30% tumor cure on day 60), whereas PL-20 showed 40% tumor cure (day 60).


Subject(s)
Chlorophyll/analogs & derivatives , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Poloxamer/administration & dosage , Animals , Cell Line, Tumor , Chlorophyll/administration & dosage , Humans , Mice , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
5.
Photodiagnosis Photodyn Ther ; 22: 241-244, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29702258

ABSTRACT

Photodynamic therapy (PDT) is an office-based treatment for precancerous and early cancerous skin changes. PDT induces cell death through the production of reactive oxygen species (ROS). Cyclobutane pyrimidine dimers (CPDs) are the most important DNA changes responsible for ultraviolet (UV) carcinogenesis. Recently ROS induced by UVA were shown to generate CPDs via activating melanin. This raised the possibility that PDT induced ROS may also induce CPDs and mutagenesis in melanin containing cells. Previously the effect of PDT on CPDs in melanin containing cells has not been assessed. Our current work aimed to compare the generation of CPDs in melanin containing cells subjected to UVA treatment and porfimer sodium red light PDT. We used ELISA to detect CPDs. After UVA we found a dose dependent increase in CPDs in melanoma cells (B16-F10, MNT-1) with CPD levels peaking hours after discontinuation of UVA treatment. This indicated the generation of UVA induced dark-CPDs in the model. Nevertheless, PDT in biologically relevant doses was unable to induce CPDs. Our work provides evidence for the lack of CPD generation by PDT in melanin containing cells.


Subject(s)
Dihematoporphyrin Ether/pharmacology , Melanins/metabolism , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Pyrimidine Dimers/biosynthesis , Ultraviolet Rays/adverse effects , DNA Damage/physiology , Enzyme-Linked Immunosorbent Assay , Humans , Melanocytes/drug effects , Melanoma/drug therapy
6.
ACS Chem Biol ; 12(4): 933-946, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28165706

ABSTRACT

The tetrapyrrole structure of porphyrins used as photosentizing agents is thought to determine uptake and retention by malignant epithelial cancer cells. To assess the contribution of the oxidized state of individual rings to these cellular processes, bacteriochlorophyll a was converted into the ring "D" reduced 3-devinyl-3-[1-(1-hexyloxy)ethyl]pyropheophorbide-a (HPPH) and the corresponding ring "B" reduced isomer (iso-HPPH). The carboxylic acid analogs of both ring "B" and ring "D" reduced isomers showed several-fold higher accumulation into the mitochondria and endoplasmic reticulum by primary culture of human lung and head and neck cancer cells than the corresponding methyl ester analogs that localize primarily to granular vesicles and to a lesser extent to mitochondria. However, long-term cellular retention of these compounds exhibited an inverse relationship with tumor cells generally retaining better the methyl-ester derivatives. In vivo distribution and tumor uptake was evaluated in the isogenic model of BALB/c mice bearing Colon26 tumors using the respective 14C-labeled analogs. Both carboxylic acid derivatives demonstrated similar intracellular localization and long-term tumor cure with no significant skin phototoxicity. PDT-mediated tumor action involved vascular damage, which was confirmed by a reduction in blood flow and immunohistochemical assessment of damage to the vascular endothelium. The HPPH stereoisomers (epimers) showed identical uptake (in vitro & in vivo), intracellular retention and photoreaction.


Subject(s)
Chlorophyll/analogs & derivatives , Photochemotherapy , Photosensitizing Agents/pharmacology , Animals , Cell Line, Tumor , Chlorophyll/chemistry , Chlorophyll/metabolism , Chlorophyll/pharmacology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Isomerism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Molecular Structure , Photosensitizing Agents/metabolism
7.
J Med Chem ; 59(21): 9774-9787, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27749069

ABSTRACT

We report herein the synthesis and biological efficacy of near-infrared (NIR), bacteriochlorin analogues: 3-(1'-butyloxy)ethyl-3-deacetyl-bacteriopurpurin-18-N-butylimide methyl ester (3) and the corresponding carboxylic acid 10. In in vitro assays, compared to its methyl ester analogue 3, the corresponding carboxylic acid derivative 10 showed higher photosensitizing efficacy. However, due to drastically different pharmacokinetics in vivo, the PS 3 (HPLC purity >99%) showed higher tumor uptake and long-term tumor cure than 10 (HPLC purity >96.5%) in BALB/c mice bearing Colon 26 tumors. Isomerically pure R- and S- isomers of 3 (3a and 3b, purity by HPLC > 99%) under similar treatment parameters showed identical efficacy in vitro and in vivo. In addition, photosensitizer (PS) 3 showed limited skin phototoxicity and provides an additional advantage over the clinically approved chemically complex hematoporphyrin derivative as well as other porphyrin-based PDT agents, which makes 3 a promising dual-function agent for fluorescence-guided surgery with an option of phototherapy of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Fluorescence , Infrared Rays , Photochemotherapy , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Mice , Mice, Inbred BALB C , Molecular Structure , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porphyrins/chemical synthesis , Porphyrins/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
8.
Bioconjug Chem ; 27(3): 667-80, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26735143

ABSTRACT

Herein we report the syntheses and comparative photophysical, electrochemical, in vitro, and in vivo biological efficacy of 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-cyanine dye (HPPH-CD) and the corresponding indium (In), gallium (Ga), and palladium (Pd) conjugates. The insertion of a heavy metal in the HPPH moiety makes a significant difference in FRET (Förster resonance energy transfer) and electrochemical properties, which correlates with singlet oxygen production [a key cytotoxic agent for photodynamic therapy (PDT)] and long-term in vivo PDT efficacy. Among the metalated analogs, the In(III) HPPH-CD showed the best cancer imaging and PDT efficacy. Interestingly, in contrast to free base HPPH-CD, which requires a significantly higher therapeutic dose (2.5 µmol/kg) than imaging dose (0.3 µmol/kg), the corresponding In(III) HPPH-CD showed excellent imaging and therapeutic potential at a remarkably low dose (0.3 µmol/kg) in BALB/c mice bearing Colon26 tumors. A comparative study of metalated and corresponding nonmetalated conjugates further confirmed that STAT-3 dimerization can be used as a biomarker for determining the level of photoreaction and tumor response.


Subject(s)
Metals/chemistry , Neoplasms, Experimental/pathology , Photochemotherapy , Porphyrins/chemistry , Animals , Fluorescence Resonance Energy Transfer , Mice , Spectrophotometry, Ultraviolet
9.
J Surg Res ; 200(1): 8-12, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26494011

ABSTRACT

BACKGROUND: There is a need to develop novel therapies for non-small cell lung cancer (NSCLC). Photodynamic therapy has been used successfully for endobronchial palliation of NSCLC, and its role in early stages of disease is being explored. We hypothesized that a novel photosensitizer, PS1, would be more effective than the standard agent, porfimer sodium (Photofrin or PFII), in treating human lung cancer xenografts in mice. MATERIALS AND METHODS: Patient-derived NSCLC xenografts were established subcutaneously in severe combined immune deficiency mice. Two groups of five mice were injected with PS1 (3-[1'-m-iodobenzyloxy]ethyl-3-devinylpyropheophorbide-a), a chlorophyll-a derivative, or PFII (a purified version of hematoporphyrin derivative) and then treated with nonthermal laser light. Four mice were treated with laser light without photosensitizer and six mice received no treatment at all. All mice were then observed for tumor growth. The tumor growth end point, time-to-1000 mm(3), was evaluated using standard Kaplan-Meier methods and the log-rank test. Tumor hematoxylin and eosin and caspase 3 staining was done to evaluate necrosis and apoptosis. RESULTS: The median time-to-1000 mm(3) was 12, 12, 26, and 52 d for the control, light only, PFII, and PS1 groups. There was a significant association between the tumor growth end point and treatment (P < 0.05). Hematoxylin and eosin staining revealed <1%, 0%, 67%, and 80% necrosis, and caspase 3 positivity was 2%, <1%, 17%, and 39%, respectively, in the same four groups. CONCLUSIONS: The mice treated with PS1 exhibited a longer time for tumor regrowth and showed more tumor necrosis and apoptosis compared with the other treatment groups. Thus, the novel photosensitizer, PS1, was demonstrated to be more effective than porfimer sodium in this preclinical pilot study.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Chlorophyll/analogs & derivatives , Dihematoporphyrin Ether/therapeutic use , Lung Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Chlorophyll/therapeutic use , Humans , Kaplan-Meier Estimate , Lung Neoplasms/pathology , Mice , Mice, SCID , Neoplasm Transplantation , Pilot Projects , Transplantation, Heterologous , Treatment Outcome
10.
Bioorg Med Chem ; 23(13): 3603-17, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25936263

ABSTRACT

We have previously shown that the (124)I-analog of methyl 3-(1'-m-iodobenzyloxy) ethyl-3-devinyl-pyropheophorbide-a derived as racemic mixture from chlorophyll-a can be used for PET (positron emission tomography)-imaging in animal tumor models. On the other hand, as a non-radioactive analog, it showed excellent fluorescence and photodynamic therapy (PDT) efficacy. Thus, a single agent in a mixture of radioactive ((124)I-) and non-radioactive ((127)I) material can be used for both dual-imaging and PDT of cancer. Before advancing to Phase I human clinical trials, we evaluated the activity of the individual isomers as well as the impact of a chiral center at position-3(1) in directing in vitro/in vivo cellular uptake, intracellular localization, epithelial tumor cell-specific retention, fluorescence/PET imaging, and photosensitizing ability. The results indicate that both isomers (racemates), either as methyl ester or carboxylic acid, were equally effective. However, the methyl ester analogs, due to subcellular deposition into vesicular structures, were preferentially retained. All derivatives containing carboxylic acid at the position-17(2) were noted to be substrate for the ABCG2 (a member of the ATP binding cassette transporters) protein explaining their low retention in lung tumor cells expressing this transporter. The compounds in which the chirality at position-3 has been substituted by a non-chiral functionality showed reduced cellular uptake, retention and lower PDT efficacy in mice bearing murine Colon26 tumors.


Subject(s)
Carcinoma, Squamous Cell/radiotherapy , Chlorophyll/analogs & derivatives , Colonic Neoplasms/radiotherapy , Lung Neoplasms/radiotherapy , Photosensitizing Agents/pharmacology , Animals , Biological Transport , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/ultrastructure , Cell Line, Tumor , Chlorophyll/chemical synthesis , Chlorophyll/chemistry , Chlorophyll/pharmacology , Chlorophyll A , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/ultrastructure , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Iodine Radioisotopes , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/ultrastructure , Mice , Mice, Inbred BALB C , Molecular Imaging/methods , Neoplasm Transplantation , Organ Specificity , Photochemotherapy/methods , Photosensitizing Agents/chemical synthesis , Spirulina/chemistry , Stereoisomerism , Tumor Burden/drug effects
11.
J Fluor Chem ; 143: 177-188, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23139432

ABSTRACT

A series of 3'-difluorovinyl taxoids with C10 modifications, as well as those with C2 and C10 modifications, were strategically designed to block the metabolism by cytochrome P-450 3A4 enzyme and synthesized. These novel difluorovinyl taxoids were evaluated for their cytotoxicity against drug-sensitive human breast (MCF7), multidrug-resistant (MDR) human ovarian (NCI/ADR), human colon (HT-29) and human pancreatic (PANC-1) cancer cell lines. 3'-Difluorovinyl taxoids exhibit several to 16 times better activity against MCF7, HT-29 and PANC-1 cell lines and up to three orders of magnitude higher potency against NCI/ADR cell line as compared to paclitaxel. Structure-activity relationship study shows the critical importance of the C2 modifications on the activity against MDR cancer cell line, while the C10 modifications have a rather minor effect on the potency with some exceptions. The effect of the C2 modifications on potency against MCF7 cell line increases in the following order: H < F < Cl

12.
Nanomedicine ; 8(6): 941-50, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22115602

ABSTRACT

We report a novel post-loading approach for constructing a multifunctional biodegradable polyacrylamide (PAA) nanoplatform for tumor-imaging (fluorescence) and photodynamic therapy (PDT). This approach provides an opportunity to post-load the imaging and therapeutic agents at desired concentrations. Among the PAA nanoparticles, a formulation containing the photosensitizer, HPPH [3-(1'-hexyloxyethyl)pyropheophorbide-a], and the cyanine dye in a ratio of 2:1 minimized the undesirable quenching of the HPPH electronic excitation energy because of energy migration within the nanoparticles and/or Förster (fluorescence) resonance energy transfer (FRET) between HPPH and cyanine dye. An excellent tumor-imaging (NIR fluorescence) and phototherapeutic efficacy of the nanoconstruct formulation is demonstrated. Under similar treatment parameters the HPPH in 1% Tween 80/5% aqueous dextrose formulation was less effective than the nanoconstruct containing HPPH and cyanine dye in a ratio of 2 to 1. This is the first example showing the use of the post-loading approach in developing a nanoconstructs for tumor-imaging and therapy.


Subject(s)
Acrylic Resins/chemical synthesis , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Fluorescent Dyes , Nanocapsules/therapeutic use , Photosensitizing Agents/therapeutic use , Animals , Cell Line, Tumor , Contrast Media/therapeutic use , Diffusion , Fluorescent Dyes/chemistry , Male , Mice , Mice, Inbred BALB C , Nanocapsules/chemistry , Optical Imaging/methods , Photochemotherapy/methods , Treatment Outcome
13.
Lasers Surg Med ; 43(7): 686-95, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22057496

ABSTRACT

OBJECTIVE: A hydrophobic photosensitizer, 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), was loaded into nontoxic biodegradable amine functionalized polyacrylamide (AFPAA) nanoparticles using three different methods (encapsulation, conjugation, and post-loading), forming a stable aqueous dispersion. Each formulation was characterized for physicochemical properties as well as for photodynamic performance so as to determine the most effective nanocarrier formulation containing HPPH for photodynamic therapy (PDT). MATERIALS AND METHODS: HPPH or HPPH-linked acrylamide was added into monomer mixture and polymerized in a microemulsion for encapsulation and conjugation, respectively. For post-loading, HPPH was added to an aqueous suspension of pre-formed nanoparticles. Those nanoparticles were tested for optical characteristics, dye loading, dye leaching, particle size, singlet oxygen production, dark toxicity, in vitro photodynamic cell killing, whole body fluorescence imaging and in vivo PDT. RESULTS: HPPH was successfully encapsulated, conjugated or post-loaded into the AFPAA nanoparticles. The resultant nanoparticles were spherical with a mean diameter of 29 ± 3 nm. The HPPH remained intact after entrapment and the HPPH leaching out of nanoparticles was negligible for all three formulations. The highest singlet oxygen production was achieved by the post-loaded formulation, which caused the highest phototoxicity in in vitro assays. No dark toxicity was observed. Post-loaded HPPH AFPAA nanoparticles were localized to tumors in a mouse colon carcinoma model, enabling fluorescence imaging, and producing a similar photodynamic tumor response to that of free HPPH in equivalent dose. CONCLUSIONS: Post-loading is the promising method for loading nanoparticles with hydrophobic photosensitizers to achieve effective in vitro and in vivo PDT.


Subject(s)
Acrylic Resins , Chlorophyll/analogs & derivatives , Drug Carriers , Nanoparticles , Photochemotherapy , Photosensitizing Agents/administration & dosage , Acrylic Resins/chemical synthesis , Acrylic Resins/chemistry , Acrylic Resins/pharmacokinetics , Animals , Cell Line, Tumor , Chlorophyll/administration & dosage , Chlorophyll/chemical synthesis , Chlorophyll/pharmacokinetics , Chlorophyll/therapeutic use , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacokinetics , Photosensitizing Agents/therapeutic use
14.
Bioconjug Chem ; 22(11): 2283-95, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-21985310

ABSTRACT

Purpurinimide methyl esters, bearing variable lengths of N-substitutions, were conjugated individually to a cyanine dye with a carboxylic acid functionality. The results obtained from in vitro and in vivo studies showed a significant impact of the linkers joining the phototherapeutic and fluorescence imaging moieties. The photosensitizer-fluorophore conjugate with a PEG linker showed the highest uptake in the liver, whereas the conjugate linked with two carbon units showed excellent tumor-imaging and PDT efficacy at 24 h postinjection. Whole body imaging and biodistribution studies at variable time points portrayed enhanced fluorescent uptake of the conjugates in the tumor compared to that in the skin. Interestingly, the conjugate with the shortest linker and the one joining with two carbon units showed faster clearance from normal organs, e.g., the liver, kidney, spleen, and lung, compared to that in tumors. Both imaging and PDT efficacy of the conjugates were performed in BALB/c mice bearing Colon26 tumors. Compared to the others, the short linker conjugate showed poor tumor fluorescent properties and as a corollary does not exhibit the dual functionality of the photosensitizer-fluorophore conjugate. For this reason, it was not evaluated for in vivo PDT efficacy. However, in Colon26 tumor cells (in vitro), the short linker was highly effective. Among the conjugates with variable linkers, the rate of energy transfer from the purpurinimide moiety to the cyanine moiety increased with deceasing linker length, as examined by femtosecond laser flash photolysis measurements. No electron transfer from the purpurinimide moiety to the singlet excited state of the cyanine moiety or from the singlet excited state of the cyanine moiety to the purpurinimide moiety occurred as indicated by a comparison of transient absorption spectra with spectra of the one-electron oxidized and one-electron reduced species of the conjugate obtained by spectroelectrochemical measurements.


Subject(s)
Carbocyanines/chemistry , Cross-Linking Reagents/chemistry , Neoplasms, Experimental/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/metabolism , Animals , Carbocyanines/metabolism , Electrochemical Techniques , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Polyethylene Glycols/chemistry , Tissue Distribution
15.
Bioorg Med Chem ; 18(19): 7101-12, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20800500

ABSTRACT

Novel paclitaxel-mimicking alkaloids were designed and synthesized based on a bioactive conformation of paclitaxel, that is, REDOR-Taxol. The alkaloid 2 bearing a 5-7-6 tricyclic scaffold mimics REDOR-Taxol best among the compounds designed and was found to be the most potent compound against several drug-sensitive and drug-resistant human cancer cell lines. MD simulation study on the paclitaxel mimics 1 and 2 as well as REDOR-Taxol bound to the 1JFF tubulin structure was quite informative to evaluate the level of mimicking. The MD simulation study clearly distinguishes the 5-6-6 and 5-7-6 tricyclic scaffolds, and also shows substantial difference in the conformational stability of the tubulin-bound structures between 2 and REDOR-Taxol. The latter may account for the large difference in potency, and provides critical information for possible improvement in the future design of paclitaxel mimics.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Drug Design , Paclitaxel/chemical synthesis , Paclitaxel/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Computational Biology , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation , Molecular Mimicry , Paclitaxel/chemistry , Stereoisomerism , Structure-Activity Relationship
16.
J Org Chem ; 73(24): 9584-93, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-18975909

ABSTRACT

Novel macrocyclic paclitaxel congeners were designed to mimic the bioactive conformation of paclitaxel. Computational analysis of the "REDOR-Taxol" structure revealed that this structure could be rigidified by connecting the C14 position of the baccatin moiety and the ortho position of C3'N-benzoyl group (C3'BzN), which are ca. 7.5 A apart, with a short linker (4-6 atoms). 7-TES-14beta-allyloxybaccatin III and (3R,4S)-1-(2-alkenylbenzoyl)-beta-lactams were selected as key components, and the Ojima-Holton coupling afforded the corresponding paclitaxel-dienes. The Ru-catalyzed ring-closing metathesis (RCM) of paclitaxel-dienes gave the designed 15- and 16-membered macrocyclic taxoids. However, the RCM reaction to form the designed 14-membered macrocyclic taxoid did not proceed as planned. Instead, the attempted RCM reaction led to the occurrence of an unprecedented novel Ru-catalyzed diene-coupling process, giving the corresponding 15-membered macrocyclic taxoid (SB-T-2054). The biological activities of the novel macrocyclic taxoids were evaluated by tumor cell growth inhibition (i.e., cytotoxicity) and tubulin-polymerization assays. Those assays revealed high sensitivity of cytotoxicity to subtle conformational changes. Among the novel macrocyclic taxoids evaluated, SB-T-2054 is the most active compound, which possesses virtually the same potency as that of paclitaxel. The result may also indicate that SB-T-2054 structure is an excellent mimic of the bioactive conformation of paclitaxel. Computational analysis for the observed structure-activity relationships is also performed and discussed.


Subject(s)
Antineoplastic Agents, Phytogenic/chemical synthesis , Macrocyclic Compounds/chemical synthesis , Taxoids/chemical synthesis , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Drug Screening Assays, Antitumor , Humans , Indicators and Reagents , Macrocyclic Compounds/pharmacology , Magnetic Resonance Spectroscopy , Microscopy, Electron , Microtubules/chemistry , Models, Molecular , Molecular Conformation , Taxoids/pharmacology , Tubulin/chemical synthesis , Tubulin/chemistry
17.
J Med Chem ; 51(11): 3203-21, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18465846

ABSTRACT

Novel second-generation taxoids with systematic modifications at the C2, C10, and C3'N positions were synthesized and their structure-activity relationships studied. A number of these taxoids exhibited exceptionally high potency against multidrug-resistant cell lines, and several taxoids exhibited virtually no difference in potency against the drug-sensitive and drug-resistant cell lines. These exceptionally potent taxoids were termed "third-generation taxoids". 19 (SB-T-1214), 14g (SB-T-121303), and 14i (SB-T-1213031) exhibited excellent activity against paclitaxel-resistant ovarian cancer cell lines with mutations in beta-tubulin as well, wherein the drug resistance is mediated by the beta-tubulin mutation. These taxoids were found to possess exceptional activity in promoting tubulin assembly, forming numerous very short microtubules similar to those formed by discodermolide. Taxoids 19 and 14g also showed excellent cytotoxicity against four pancreatic cancer cell lines, expressing three to four multidrug-resistant genes. Moreover, taxoid 19 exhibited excellent in vivo efficacy against highly drug-resistant CFPAC-1 pancreatic as well as DLD-1 human colon tumor xenografts in mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Taxoids/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biopolymers , Cell Line, Tumor , Drug Design , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Paclitaxel/pharmacology , Point Mutation , Structure-Activity Relationship , Taxoids/chemistry , Taxoids/pharmacology , Transplantation, Heterologous , Tubulin/chemistry , Tubulin/genetics
18.
J Fluor Chem ; 129(9): 817-828, 2008.
Article in English | MEDLINE | ID: mdl-19448839

ABSTRACT

A series of novel 3'-difluoromethyl-taxoids and 3'-trifluoromethyl-taxoids with modifications at the C2 and C10 positions were synthesized and evaluated for their in vitro cytotoxicities against human breast carcinoma (MCF7-S, MCF7-R, LCC6-WT, LCC6-MDR), non-small cell lung carcinoma (H460) and colon adenocarcinoma (HT-29) cell lines. These second-generation fluoro-taxoids exhibited several times to more than 20 times better potency than paclitaxel against drug-sensitive cancer cell lines, MCF7-S, LCC6-WT, H460, and HT-29. These fluoro-taxoids also possess two orders of magnitude higher potency than paclitaxel against drug-resistant cancer cell lines, MCF7-R and LCC6-MDR. Structure-activity relationship study shows the importance of the C10 modification for increasing the activity against multidrug-resistant cancer cell lines. Effects of the C2-benzoate modifications on the potency in the 3-difluoromethyl-taxoid series are very clear (i.e., F < MeO < Cl < N(3)), while those in the 3-trifluoromethyl-taxoid series are less obvious. Also, different trends in the sensitivity to the C2-substitution are observed between drug-sensitive cell lines and drug-resistant cancer cell lines that overexpress efflux pumps.

19.
Clin Cancer Res ; 13(8): 2463-70, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17438106

ABSTRACT

PURPOSE: The ATP-binding cassette protein ABCG2 (breast cancer resistance protein) effluxes some of the photosensitizers used in photodynamic therapy (PDT) and, thus, may confer resistance to this treatment modality. Tyrosine kinase inhibitors (TKI) can block the function of ABCG2. Therefore, we tested the effects of the TKI imatinib mesylate (Gleevec) on photosensitizer accumulation and in vitro and in vivo PDT efficacy. EXPERIMENTAL DESIGN: Energy-dependent photosensitizer efflux and imatinib mesylate's effects on intracellular accumulation of clinically used second- and first-generation photosensitizers were studied by flow cytometry in murine and human cells with and without ABCG2 expression. Effects of ABCG2 inhibition on PDT were examined in vitro using cell viability assays and in vivo measuring photosensitizer accumulation and time to regrowth in a RIF-1 tumor model. RESULTS: Energy-dependent efflux of 2-(1-hexyloxethyl)-2-devinyl pyropheophorbide-a (HPPH, Photochlor), endogenous protoporphyrin IX (PpIX) synthesized from 5-aminolevulenic acid, and the benzoporphyrin derivative monoacid ring A (BPD-MA, Verteporfin) was shown in ABCG2+ cell lines, but the first-generation multimeric photosensitizer porfimer sodium (Photofrin) and a novel derivative of HPPH conjugated to galactose were minimally transported. Imatinib mesylate increased accumulation of HPPH, PpIX, and BPD-MA from 1.3- to 6-fold in ABCG2+ cells, but not in ABCG2- cells, and enhanced PDT efficacy both in vitro and in vivo. CONCLUSIONS: Second-generation clinical photosensitizers are transported out of cells by ABCG2, and this effect can be abrogated by coadministration of imatinib mesylate. By increasing intracellular photosensitizer levels in ABCG2+ tumors, imatinib mesylate or other ABCG2 transport inhibitors may enhance efficacy and selectivity of clinical PDT.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Neoplasm Proteins/physiology , Photochemotherapy , Photosensitizing Agents/therapeutic use , Piperazines/therapeutic use , Pyrimidines/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Antineoplastic Agents/therapeutic use , Benzamides , Carcinoma, Squamous Cell , Cell Line, Tumor , Combined Modality Therapy , Humans , Hypopharyngeal Neoplasms , Imatinib Mesylate , Photosensitizing Agents/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors
20.
Antimicrob Agents Chemother ; 51(5): 1804-12, 2007 May.
Article in English | MEDLINE | ID: mdl-17325217

ABSTRACT

Response surface methods for the study of multiple-agent interaction allow one to model all of the information present in full concentration-effect data sets and to visualize and quantify local regions of synergy, additivity, and antagonism. In randomized wells of 96-well plates, Aspergillus fumigatus was exposed to various combinations of amphotericin B, micafungin, and nikkomycin Z. The experimental design was comprised of 91 different fixed-ratio mixtures, all performed in quintuplicate. After 24 h of drug exposure, drug effect on fungal viability was assessed using the tetrazolium salt 2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide} (XTT) assay. First, we modeled each fixed-ratio combination alone using the four-parameter Hill concentration-effect model. Then, we modeled each parameter, including the 50% inhibitory concentration (IC(50)) effect, versus the proportion of each agent using constrained polynomials. Finally, we modeled the three-agent response surface overall. The overall four-dimensional response surface was complex, but it can be explained in detail both analytically and graphically. The grand model that fit the best included complex polynomial equations for the slope parameter m and the combination index (equivalent to the IC(50) for a fixed-ratio concentration, but with concentrations normalized by the respective IC(50)s of the drugs alone). There was a large region of synergy, mostly at the nikkomycin Z/micafungin edge of the ternary plots for equal normalized proportions of each drug and extending into the center of the plots. Applying this response surface method to a huge data set for a three-antifungal-agent combination is novel. This new paradigm has the potential to significantly advance the field of combination antifungal pharmacology.


Subject(s)
Aminoglycosides/pharmacology , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Lipoproteins/pharmacology , Peptides, Cyclic/pharmacology , Confidence Intervals , Drug Combinations , Echinocandins , Lipopeptides , Micafungin , Microbial Sensitivity Tests , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...