Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(12)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38526103

ABSTRACT

Incorporating self-interaction corrections (SIC) significantly improves chemical reaction barrier height predictions made using density functional theory methods. We present a detailed orbital-by-orbital analysis of these corrections for three semi-local density functional approximations (DFAs) situated on the three lowest rungs of Jacob's ladder of approximations. The analysis is based on Fermi-Löwdin Orbital Self-Interaction Correction (FLOSIC) calculations performed at several steps along the reaction pathway from the reactants (R) to the transition state (TS) to the products (P) for four representative reactions selected from the BH76 benchmark set. For all three functionals, the major contribution to self-interaction corrections of the barrier heights can be traced to stretched bond orbitals that develop near the TS configuration. The magnitude of the ratio of the self-exchange-correlation energy to the self-Hartree energy (XC/H) for a given orbital is introduced as an indicator of one-electron self-interaction error. XC/H = 1.0 implies that an orbital's self-exchange-correlation energy exactly cancels its self-Hartree energy and that the orbital, therefore, makes no contribution to the SIC in the FLOSIC scheme. For the practical DFAs studied here, XC/H spans a range of values. The largest values are obtained for stretched or strongly lobed orbitals. We show that significant differences in XC/H for corresponding orbitals in the R, TS, and P configurations can be used to identify the major contributors to the SIC of barrier heights and reaction energies. Based on such comparisons, we suggest that barrier height predictions made using the strongly constrained and appropriately normed meta-generalized gradient approximation may have attained the best accuracy possible for a semi-local functional using the Perdew-Zunger SIC approach.

2.
J Chem Phys ; 160(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38165094

ABSTRACT

π-conjugated polymers have been used in a wide range of practical applications, partly due to their unique properties that originate in the delocalization of electrons through the polymer backbone. The level of delocalization can be characterized by the induced bond length alternation (BLA), with shorter BLA connected with strong delocalization and vice versa. The accurate description of this structural parameter can be considered a benchmark for testing the capability of different electronic structure methods for self-interaction error (SIE) removal and electron correlation inclusion. Density functional theory (DFT), in its local or semi-local flavors, suffers from SIE and, thus, underestimates the BLA compared to self-interaction-free methods. In this work, we utilize the Fermi-Löwdin orbital self-interaction correction (FLOSIC) method for one-electron self-interaction removal to characterize the BLA of five oligomers with increasing length extrapolated to the polymeric limit. We compare the self-interaction-free BLA to several DFT approximations, Møller-Plesset second-order perturbation theory (MP2), and the BLA obtained with the domain based local pair natural orbital CCSD(T) [DLPNO-CCSD(T)] approximation. Our findings show that FLOSIC corrects for the small BLA given by (semi-)local DFT approximations, but it tends to overcorrect with respect to CAM-B3LYP, MP2, and DLPNO-CCSD(T).

3.
J Chem Phys ; 159(21)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38047509

ABSTRACT

We introduce a generalization of the σ-SCF method to approximate noncollinear spin ground and excited single-reference electronic states by minimizing the Hamiltonian variance. The new method is based on the σ-SCF method, originally proposed by Ye et al. [J. Chem. Phys. 147, 214104 (2017)], and provides a prescription to determine ground and excited noncollinear spin states on an equal footing. Our implementation was carried out utilizing an initial simulated annealing stage followed by a mean-field iterative self-consistent approach to simplify the cumbersome search introduced by generalizing the spin degrees of freedom. The simulated annealing stage ensures a broad exploration of the Hilbert space spanned by the generalized spin single-reference states with random complex element-wise rotations of the generalized density matrix elements in the simulated annealing stage. The mean-field iterative self-consistent stage employs an effective Fockian derived from the variance, which is utilized to converge tightly to the solutions. This process helps us to easily find complex spin structures, avoiding manipulating the initial guess. As proof-of-concept tests, we present results for Hn (n = 3-7) planar rings and polyhedral clusters with geometrical spin frustration. We show that most of these systems have noncollinear spin excited states that can be interpreted in terms of geometric spin frustration. These states are not directly targeted by energy minimization methods, which are meant to converge to the ground state. This stresses the capability of the σ-SCF methodology to find approximate noncollinear spin structures as mean-field excited states.

4.
J Chem Theory Comput ; 19(21): 7496-7504, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37852250

ABSTRACT

A first-principles approach to describe electron dynamics in open quantum systems driven far from equilibrium via external time-dependent stimuli is introduced. Within this approach, the driven Liouville-von Neumann methodology is used to impose open boundary conditions on finite model systems whose dynamics is described using time-dependent density functional theory. As a proof of concept, the developed methodology is applied to simple spin-compensated model systems, including a hydrogen chain and a graphitic molecular junction. Good agreement between steady-state total currents obtained via direct propagation and those obtained from the self-consistent solution of the corresponding Sylvester equation indicates the validity of the implementation. The capability of the new computational approach to analyze, from first principles, non-equilibrium dynamics of open quantum systems in terms of temporally and spatially resolved current densities is demonstrated. Future extensions of the approach toward the description of dynamical magnetization and decoherence effects are briefly discussed.

5.
J Chem Phys ; 159(15)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37861122

ABSTRACT

An Achille's heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3-, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth's atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi-Löwdin-Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree-Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.

6.
J Chem Theory Comput ; 19(17): 5760-5772, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37582098

ABSTRACT

Multicenter transition-metal complexes (MCTMs) with magnetically interacting ions have been proposed as components for information-processing devices and storage units. For any practical application of MCTMs as magnetic units, it is crucial to characterize their magnetic behavior, and in particular, the isotropic magnetic exchange coupling, J, between its magnetic centers. Due to the large size of typical MCTMs, density functional theory is the only practical electronic structure method for evaluating the J coupling. Here, we assess the accuracy of different density functional approximations for predicting the magnetic couplings of eight dinuclear transition-metal complexes, including five dimanganese, two dicopper, and one divanadium with known reliable experimental J couplings spanning from ferromagnetic to strong antiferromagnetic. The density functionals considered include global hybrid functionals which mix semilocal density functional approximations and exact exchange with a fixed admixing parameter, six local hybrid functionals where the admixing parameters are extended to be spatially dependent, the SCAN and r2SCAN meta-generalized gradient approximations (GGAs), and two widely used GGAs. We found that global hybrids tested in this work have a tendency to over-correct the error in magnetic coupling parameters from the Perdew-Burke-Ernzerhof (PBE) GGA as seen for manganese complexes. The performance of local hybrid density functionals shows no improvement in terms of bias and is scattered without a clear trend, suggesting that more efforts are needed for the extension from global to local hybrid density functionals for this particular property. The SCAN and r2SCAN meta-GGAs are found to perform as well as benchmark global hybrids on most tested complexes. We further analyze the charge density redistribution of meta-GGAs as well as global and local hybrid density functionals with respect to that of PBE, in connection to the self-interaction error or delocalization error.

7.
J Phys Chem A ; 127(2): 527-534, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36598275

ABSTRACT

The Fermi-Löwdin orbital self-interaction correction (FLOSIC) method effectively provides a transformation from canonical orbitals to localized Fermi-Löwdin orbitals which are used to remove the self-interaction error in the Perdew-Zunger (PZ) framework. This transformation is solely determined by a set of points in space, called Fermi-Löwdin descriptors (FODs), and the occupied canonical orbitals or the density matrix. In this work, we provide a detailed workflow for the implementation of the FLOSIC method for removal of self-interaction error in DFT calculations in an orbital-by-orbital basis that takes advantage of the unitary invariant nature of the FLOSIC method. In this way, it is possible to cast the self-consistent energy minimization at fixed FODs in the same manner than standard Kohn-Sham with one additional term in the Kohn-Sham Hamiltonian that introduces the PZ self-interaction correction. Each energy minimization iteration is divided in two substeps, one for the density matrix and one for the FODs. Expressions for the effective Kohn-Sham matrix and FOD gradients are provided such that its implementation is suitable for most electronic structure codes. We analyze the convergence characteristics of the algorithm and present applications for the evaluation of NMR shielding constants and real-time time-dependent DFT simulations based on the Liouville-von Neumann equation to calculate excitation energies.

8.
Inorg Chem ; 61(43): 17256-17267, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36251497

ABSTRACT

The synthesis and characterization of a high-nuclearity FeIII/O/arsinate cluster is reported within the salt [Fe36O12(OH)6(O2AsMe2)63(O2CH)3(H2O)6](NO3)12 (1). The compound was prepared from the reaction of Fe(NO3)3·9H2O, dimethylarsinic acid (Me2AsO2H), and triethylamine in a 1:2:4 molar ratio in acetonitrile. The Fe36 cation of 1 is an unprecedented structural type consisting of nine Fe4 butterfly units of two types, three {FeIII4(µ3-O)2} units A, and six {FeIII4(µ3-O)(µ3-OH)} units B, linked by multiple bridging Me2AsO2- groups into an Fe36 triangular wheel/loop with C3 crystallographic and D3 virtual symmetry that looks like a guitar plectrum. The unusual structure has been rationalized on the basis of the different curvatures of units A and B, the presence of intra-Fe36 hydrogen bonding, and the tendency of Me2AsO2- groups to favor µ3-bridging modes. The cations stack into supramolecular nanotubes parallel to the crystallographic c axis and contain badly disordered solvent and NO3- anions. The cation of 1 is the highest-nuclearity "ferric wheel" to date and also the highest-nuclearity Fe/O cluster of any structural type with a single contiguous Fe/O core. Variable-temperature direct-current magnetic susceptibility data and alternating-current in-phase magnetic susceptibility data indicate that the cation of 1 possesses an S = 0 ground state and dominant antiferromagnetic interactions. The Fe2 pairwise Ji,j couplings were estimated by the combined use of a magnetostructural correlation for high-nuclearity FeIII/oxo clusters and density functional theory calculations using broken-symmetry methods and the Green's function approach. The three methods gave satisfyingly similar Ji,j values and allowed the identification of spin-frustration effects and the resulting relative spin-vector alignments and thus rationalization of the S = 0 ground state of the cation.

9.
J Phys Chem A ; 126(38): 6790-6800, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36129336

ABSTRACT

In this work, we assess the potential of the Green's function approximation to predict isotropic magnetic exchange couplings and to reproduce the standard broken-symmetry energy difference approach for transition metal complexes. To this end, we have selected a variety of heterodinuclear, homodinuclear, and polynuclear systems containing 3d transition metal centers and computed the couplings using both the Green's function and energy difference methods. The Green's function approach is shown to have mixed results for the cases tested. For dinuclear complexes with large strength couplings (≳50 cm-1), the Green's function method is unable to reliably reproduce the energy difference values. However, for weaker dinuclear couplings, the Green's function approach acceptably reproduces broken-symmetry energy difference couplings. In polynuclear cases, the Green's function approximation worked remarkably well, especially for FeIII complexes. On the other hand, for a NiII polynuclear complex, qualitatively wrong couplings are predicted. Overall, the evaluation of exchange couplings from local rigid magnetization rotations offers a powerful alternative to time-consuming energy differences methods for large polynuclear transition metal complexes, but to achieve a quantitative agreement, some improvements to the method are needed.


Subject(s)
Coordination Complexes , Ferric Compounds , Magnetic Phenomena
10.
Nat Commun ; 13(1): 4113, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840588

ABSTRACT

When reducing the size of materials towards the nanoscale, magnetic properties can emerge due to structural variations. Here, we show the reverse effect, where the structure of nanomaterials is controlled by magnetic manipulations. Using the break-junction technique, we find that the interatomic distance in platinum atomic wires is shorter or longer by up to ∼20%, when a magnetic field is applied parallel or perpendicular to the wires during their formation, respectively. The magnetic field direction also affects the wire length, where longer (shorter) wires are formed under a parallel (perpendicular) field. Our experimental analysis, supported by calculations, indicates that the direction of the applied magnetic field promotes the formation of suspended atomic wires with a specific magnetization orientation associated with typical orbital characteristics, interatomic distance, and stability. A similar effect is found for various metal and metal-oxide atomic wires, demonstrating that magnetic fields can control the atomistic structure of different nanomaterials when applied during their formation stage.

11.
Inorg Chem ; 61(29): 11261-11276, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35816698

ABSTRACT

The synthesis, structure, and magnetic properties of three related iron(III)-oxo clusters are reported, [Fe7O3(O2CPh)9(mda)3(H2O)] (1), [Fe22O14(OH)3(O2CMe)21(mda)6](ClO4)2 (2), and [Fe24O15(OH)4(OEt)(O2CMe)21(mda)7](ClO4)2 (3), where mdaH2 is N-methyldiethanolamine. 1 was prepared from the reaction of [Fe3O(O2CPh)6(H2O)3](NO3) with mdaH2 in a 1:2 ratio in MeCN, whereas 2 and 3 were prepared from the reaction of FeCl3/NaO2CMe/mdaH2 in a 2:∼13:2 ratio and FeCl3/NaO2CMe/mdaH2/pyridine in a 2:∼13:2:25 ratio, respectively, both in EtOH. The core of 1 consists of a central octahedral FeIII ion held within a nonplanar Fe6 loop by three µ3-O2- and three µ2-RO- arms from the three mda2- chelates. The cores of the cations of 2 and 3 consist of an A:B:A three-layer topology, in which a central Fe6 (2) or Fe8 (3) layer B is sandwiched between two Fe8 layers A. The A layers structurally resemble 1 with the additional Fe added at the center to retain virtual C3 symmetry. The central Fe6 layer B of 2 consists of a {Fe4(µ4-O)2(µ3-OH)2}6+ cubane with an Fe on either side attached to cubane O2- ions, whereas that of 3 has the same cubane but with an {Fe3(µ3-O)(µ-OH)} unit attached on one side and a single Fe on the other. Variable-temperature dc and ac magnetic susceptibility studies revealed dominant antiferromagnetic coupling in all complexes leading to ground-state spins of S = 5/2 for 1 and S = 0 for 2 and 3. All Fe2 pairwise exchange parameters (Jij) for 1-3 were estimated by two independent methods: density functional theory (DFT) calculations using broken symmetry methods and a magnetostructural correlation previously developed for high-nuclearity FeIII/O complexes. The two approaches gave satisfyingly similar Jij values, and the latter allowed rationalization of the experimental ground states by identification of the spin frustration effects operative and the resultant relative spin vector alignments at each FeIII ion.

12.
J Chem Phys ; 156(13): 134102, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35395893

ABSTRACT

Density functional theory (DFT)-based descriptions of the adsorption of small molecules on transition metal ions are prone to self-interaction errors. Here, we show that such errors lead to a large over-estimation of adsorption energies of small molecules on Cu+, Zn+, Zn2+, and Mn+ in local spin density approximation (LSDA) and Perdew, Burke, Ernzerhof (PBE) generalized gradient approximation calculations compared to reference values computed using the coupled-cluster with single, doubles, and perturbative triple excitations method. These errors are significantly reduced by removing self-interaction using the Perdew-Zunger self-interaction correction (PZ-SIC) in the Fermi-Löwdin Orbital (FLO) SIC framework. In the case of FLO-PBE, typical errors are reduced to less than 0.1 eV. Analysis of the results using DFT energies evaluated on self-interaction-corrected densities [DFT(@FLO)] indicates that the density-driven contributions to the FLO-DFT adsorption energy corrections are roughly the same size in DFT = LSDA and PBE, but the total corrections due to removing self-interaction are larger in LSDA.

13.
J Phys Chem A ; 126(12): 1923-1935, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35302373

ABSTRACT

We examine the role of self-interaction error (SIE) removal on the evaluation of magnetic exchange coupling constants. In particular, we analyze the effect of scaling down the self-interaction correction (SIC) for three nonempirical density functional approximations (DFAs) namely, the local spin density approximation, the Perdew-Burke-Ernzerhof generalized gradient approximation, and the recent SCAN family of meta-GGA functionals. To this end, we employ three one-electron SIC methods: Perdew-Zunger SIC [Perdew, J. P.; Zunger, A. Phys. Rev. B, 1981, 23, 5048.], the orbitalwise scaled SIC method [Vydrov, O. A. et al. J. Chem. Phys. 2006, 124, 094108.], and the recent local scaling method [Zope, R. R. et al. J. Chem. Phys. 2019, 151, 214108.]. We compute the magnetic exchange coupling constants using the spin projection and nonprojection approaches for sets of molecules composed of dinuclear and polynuclear H···He models, organic radical molecules, and chlorocuprate and compare these results against accurate theories and experiment. Our results show that for the systems that mainly consist of single-electron regions, PZSIC performs well, but for more complex organic systems and the chlorocuprates, an overcorrecting tendency of PZSIC combined with the DFAs utilized in this work is more pronounced, and in such cases, LSIC with kinetic energy density ratio performs better than PZSIC. Analysis of the results in terms of SIC corrections to the density and to the total energy shows that both density and energy correction are required to obtain an improved prediction of magnetic exchange couplings.

14.
Phys Chem Chem Phys ; 23(34): 18678-18685, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612405

ABSTRACT

We examine the effect of removing self-interaction error (SIE) on the calculation of molecular polarizabilities in the local spin density (LSDA) and generalized gradient approximations (GGA). To this end, we utilize a database of 132 molecules taken from a recent benchmark study [Hait and Head-Gordon, Phys. Chem. Chem. Phys., 2018, 20, 19800] to assess the influence of SIE on polarizabilities by comparing results with accurate reference data. Our results confirm that the general overestimation of molecular polarizabilities by these density functional approximations can be attributed to SIE. However, removing SIE using the Perdew-Zunger self-interaction-correction (PZ-SIC) method, implemented using the Fermi-Löwdin Orbital SIC approach, leads to an underestimation of molecular polarizabilities, showing that PZ-SIC overcorrects when combined with LSDA or GGA. Application of a recently proposed locally scaled SIC [Zope, et al., J. Chem. Phys., 2019, 151, 214108] is found to provide more accurate polarizabilities. We attribute this to the ability of the local scaling scheme to selectively correct for SIE in the regions of space where the correction is needed most.

15.
J Chem Phys ; 154(2): 024102, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33445898

ABSTRACT

The Perdew-Zunger self-interaction correction (PZ-SIC) removes unphysical electron self-interaction from calculations employing standard density functional approximations. Doing so improves many computed properties, bringing them into better agreement with experimental observations or with results from high-level quantum chemistry calculations. However, while PZ-SIC generally corrects in the right direction relative to the corresponding reference values, in many cases, it over-corrects. For this reason, scaled-down versions of PZ-SIC have been proposed and investigated. These approaches have mostly employed exterior scaling in which SIC correction terms are scaled in the same way at every point in space. Recently, a new local, or interior, scaling SIC method was proposed on non-empirical grounds to restore a property of the exact, but unknown, density functional that is broken in PZ-SIC. In this approach, the scaling at each point depends on the character of the charge density at that point. However, the local scaling can be done in various ways while still restoring the behavior of the exact functional. In this work, we compare and contrast the performance of various interior scaling approaches for addressing over-corrections of calculated molecular dipole moments and atomic polarizabilities and properties that reflect the nature of the electronic charge density.

16.
Inorg Chem ; 59(24): 18090-18101, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33291879

ABSTRACT

A program has been initiated to develop FeIII/oxo cluster chemistry with the "pseudocarboxylate" ligand dimethylarsinate (Me2AsO2-) for comparison with the well investigated FeIII/oxo/carboxylate cluster area. The synthesis and characterization of three polynuclear FeIII complexes are reported, [Fe12O4(O2CtBu)8(O2AsMe2)17(H2O)3]Cl3 (1), Na2[Fe12Na2O4(O2AsMe2)20(NO3)6(Me2AsO2H)2(H2O)4](NO3)6 (2), and [Fe3(O2AsMe2)6(Me2AsO2H)2(hqn)2](NO3) (3), where hqnH is 8-hydroxyquinoline. The Fe12 core of 1 is a type never previously encountered in FeIII carboxylate chemistry, consisting of two Fe6 units each of which comprises two {Fe3(µ3-O2-)} units bridged by three Me2AsO2- groups and linked into an Fe12 loop structure by two anti-anti η1:η1:µ Me2AsO2- groups, a bridging mode extremely rare with carboxylates. 2 also consists of two Fe6 units, differing in their ligation from those in 1, and this time linked together into a linear structure by a central {Na2(NO3)2} bridging unit. 3 is a linear Fe3 complex with no monatomic bridges between FeIII ions, a very rare situation in FeIII chemistry with any ligands and unprecedented in Fe carboxylate chemistry. The distinct differences observed in arsinate vs carboxylate ligation modes are rationalized largely based on the greater basicity of the former vs the latter. Variable-temperature dc and ac magnetic susceptibility data reveal all Fe2 pairwise interactions to be antiferromagnetic. For 1 and 2, the different Jij couplings were estimated by use of a magnetostructural correlation for high nuclearity FeIII-oxo clusters and by density functional theory calculations using broken symmetry methods, allowing identification of their relative spin vector alignments and thus rationalization of their S = 0 ground states. The Jij values were then used as input values to give excellent fits of the experimental χMT vs T data. For 3, the fits of the experimental χMT vs T data to the Van Vleck equation or with PHI gave a very weak J12 = -0.8(1) cm-1 (H = -2JSi·Sj convention) between adjacent FeIII ions and an S = 5/2 ground state. These initial FeIII arsinate complexes also provide structural parameters that help validate literature assignments of arsinate binding modes to iron oxide/hydroxide minerals as part of environmental concerns of using arsenic-containing herbicides in agriculture.

17.
J Chem Phys ; 152(21): 214109, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32505149

ABSTRACT

The Perdew-Zunger (PZ) self-interaction correction (SIC) was designed to correct the one-electron limit of any approximate density functional for the exchange-correlation (xc) energy, while yielding no correction to the exact functional. Unfortunately, it spoils the slowly varying (in space) limits of the uncorrected approximate functionals, where those functionals are right by construction. The right limits can be restored by locally scaling down the energy density of the PZ SIC in many-electron regions, but then a spurious correction to the exact functional would be found unless the self-Hartree and exact self-xc terms of the PZ SIC energy density were expressed in the same gauge. Only the local density approximation satisfies the same-gauge condition for the energy density, which explains why the recent local-scaling SIC is found here to work excellently for atoms and molecules only with this basic approximation and not with the more advanced generalized gradient approximations (GGAs) and meta-GGAs, which lose the Hartree gauge via simplifying integrations by parts. The transformation of energy density that achieves the Hartree gauge for the exact xc functional can also be applied to approximate functionals. Doing so leads to a simple scaled-down self-interaction correction that is typically much more accurate than PZ SIC in tests for many molecular properties (including equilibrium bond lengths). The present work unambiguously shows that the largest errors of PZ SIC applied to standard functionals at three levels of approximation can be removed by restoring their correct slowly varying density limits. It also confirms the relevance of these limits to atoms and molecules.

18.
Proc Natl Acad Sci U S A ; 117(21): 11283-11288, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393631

ABSTRACT

We gauge the importance of self-interaction errors in density functional approximations (DFAs) for the case of water clusters. To this end, we used the Fermi-Löwdin orbital self-interaction correction method (FLOSIC) to calculate the binding energy of clusters of up to eight water molecules. Three representative DFAs of the local, generalized gradient, and metageneralized gradient families [i.e., local density approximation (LDA), Perdew-Burke-Ernzerhof (PBE), and strongly constrained and appropriately normed (SCAN)] were used. We find that the overbinding of the water clusters in these approximations is not a density-driven error. We show that, while removing self-interaction error does not alter the energetic ordering of the different water isomers with respect to the uncorrected DFAs, the resulting binding energies are corrected toward accurate reference values from higher-level calculations. In particular, self-interaction-corrected SCAN not only retains the correct energetic ordering for water hexamers but also reduces the mean error in the hexamer binding energies to less than 14 meV/[Formula: see text] from about 42 meV/[Formula: see text] for SCAN. By decomposing the total binding energy into many-body components, we find that large errors in the two-body interaction in SCAN are significantly reduced by self-interaction corrections. Higher-order many-body errors are small in both SCAN and self-interaction-corrected SCAN. These results indicate that orbital-by-orbital removal of self-interaction combined with a proper DFA can lead to improved descriptions of water complexes.

19.
J Chem Phys ; 151(21): 214108, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31822080

ABSTRACT

Self-interaction (SI) error, which results when exchange-correlation contributions to the total energy are approximated, limits the reliability of many density functional approximations. The Perdew-Zunger SI correction (PZSIC), when applied in conjunction with the local spin density approximation (LSDA), improves the description of many properties, but overall, this improvement is limited. Here, we propose a modification to PZSIC that uses an iso-orbital indicator to identify regions where local SICs should be applied. Using this local-scaling SIC (LSIC) approach with LSDA, we analyze predictions for a wide range of properties including, for atoms, total energies, ionization potentials, and electron affinities and, for molecules, atomization energies, dissociation energy curves, reaction energies, and reaction barrier heights. LSIC preserves the results of PZSIC-LSDA for properties where it is successful and provides dramatic improvements for many of the other properties studied. Atomization energies calculated using LSIC are better than those of the Perdew, Burke, and Ernzerhof generalized gradient approximation (GGA) and close to those obtained with the strongly constrained and appropriately normed meta-GGA. LSIC also restores the uniform gas limit for the exchange energy that is lost in PZSIC-LSDA. Further performance improvements may be obtained by an appropriate combination or modification of the local scaling factor and the particular density functional approximation.

20.
J Chem Phys ; 151(17): 174106, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703485

ABSTRACT

Spurious electron self-interaction in density functional approximations (DFAs) can lead to inaccurate predictions of charge transfer in heteronuclear molecules that manifest as errors in calculated electrostatic dipoles. Here, we show the magnitude of these errors on dipoles computed for a diverse set of 47 molecules taken from the recent benchmark study of Hait and Head-Gordon [J. Chem. Theory Comput. 14, 1969 (2018)]. We compare the results of Perdew-Wang local spin density approximation (PW92), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and strongly constrained and appropriately normed (SCAN) meta-GGA dipole calculations, along with those of their respective self-interaction-corrected (SIC) counterparts, to reference values from accurate wave function-based methods. The SIC calculations were carried out using the Fermi-Löwdin orbital (FLO-SIC) approach. We find that correcting for self-interaction generally increases the degree of charge transfer, thereby increasing the size of calculated dipole moments. The FLO-SIC-PW92 and FLO-SIC-PBE dipoles are in better agreement with reference values than their uncorrected DFA counterparts, particularly for strongly ionic molecules where significant improvement is seen. Applying FLO-SIC to SCAN does not improve dipole values overall. We also show that removing self-interaction improves the description of the dipole for stretched-bond geometries and recovers the physically correct separated atom limit of zero dipole. Finally, we find that the best agreement between the FLO-SIC-DFA and reference dipoles occurs when the molecular geometries are optimized using the FLO-SIC-DFA.

SELECTION OF CITATIONS
SEARCH DETAIL
...