Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589690

ABSTRACT

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.

2.
Sci Rep ; 14(1): 814, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191575

ABSTRACT

Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder characterized by deficits in sociability and repetitive behaviour, however there is a great heterogeneity within other comorbidities that accompany ASD. Recently, gut microbiome has been pointed out as a plausible contributing factor for ASD development as individuals diagnosed with ASD often suffer from intestinal problems and show a differentiated intestinal microbial composition. Nevertheless, gut microbiome studies in ASD rarely agree on the specific bacterial taxa involved in this disorder. Regarding the potential role of gut microbiome in ASD pathophysiology, our aim is to investigate whether there is a set of bacterial taxa relevant for ASD classification by using a sibling-controlled dataset. Additionally, we aim to validate these results across two independent cohorts as several confounding factors, such as lifestyle, influence both ASD and gut microbiome studies. A machine learning approach, recursive ensemble feature selection (REFS), was applied to 16S rRNA gene sequencing data from 117 subjects (60 ASD cases and 57 siblings) identifying 26 bacterial taxa that discriminate ASD cases from controls. The average area under the curve (AUC) of this specific set of bacteria in the sibling-controlled dataset was 81.6%. Moreover, we applied the selected bacterial taxa in a tenfold cross-validation scheme using two independent cohorts (a total of 223 samples-125 ASD cases and 98 controls). We obtained average AUCs of 74.8% and 74%, respectively. Analysis of the gut microbiome using REFS identified a set of bacterial taxa that can be used to predict the ASD status of children in three distinct cohorts with AUC over 80% for the best-performing classifiers. Our results indicate that the gut microbiome has a strong association with ASD and should not be disregarded as a potential target for therapeutic interventions. Furthermore, our work can contribute to use the proposed approach for identifying microbiome signatures across other 16S rRNA gene sequencing datasets.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Microbiota , Child , Humans , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Machine Learning
3.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232346

ABSTRACT

The bacterial metabolite 4-methylphenol (para-cresol or p-cresol) and its derivative p-cresyl sulfate (pCS) are elevated in the urine and feces of children with autism spectrum disorder (ASD). It has been shown that p-cresol administration induces social behavior deficits and repetitive behavior in mice. However, the mechanisms of p-cresol, specifically its metabolite pCS that can reach the brain, in ASD remain to be investigated. The pCS has been shown to inhibit LPS-stimulated inflammatory response. A Disintegrin And Metalloprotease 10 (ADAM10) and A Disintegrin And Metalloprotease 17 (ADAM17) are thought to regulate microglial immune response by cleaving membrane-bound proteins. In the present study, a neuroinflammation model of LPS-activated BV2 microglia has been used to unveil the potential molecular mechanism of pCS in ASD pathogenesis. In microglial cells pCS treatment decreases the expression or maturation of ADAM10 and ADAM17. In addition, pCS treatment attenuates TNF-α and IL-6 releases as well as phagocytosis activity of microglia. In in vitro ADAM10/17 inhibition experiments, either ADAM10 or ADAM17 inhibition reduces constitutive and LPS-activated release of TNF-α, TNFR-1 and IL-6R by microglial cells, while it increases constitutive and LPS-activated microglial phagocytotic activity. The in vivo results further confirm the involvement of ADAM10 and ADAM17 in ASD pathogenesis. In in utero VPA-exposed male mice, elevated concentration in serum of p-cresol-associated metabolites pCS and p-cresyl glucuronide (pCG) is associated with a VPA-induced increased ADAM10 maturation, and a decreased ADAM17 maturation that is related with attenuated levels of soluble TNF-α and TGF-ß1 in the mice brain. Overall, the present study demonstrates a partial role of ADAM10 and ADAM17 in the derailed innate immune response of microglial cells associated with pCS-induced ASD pathogenesis.


Subject(s)
ADAM Proteins , ADAM17 Protein/metabolism , Autism Spectrum Disorder , ADAM Proteins/metabolism , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Autism Spectrum Disorder/etiology , Cresols , Disintegrins , Glucuronides , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Male , Membrane Proteins , Mice , Microglia/metabolism , Sulfates , Sulfuric Acid Esters , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha/metabolism
4.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L266-L280, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35699290

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is often associated with intestinal comorbidities. In this study, changes in intestinal homeostasis and immunity in a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD model were investigated. Mice were exposed to cigarette smoke or air for 72 days, except days 42, 52, and 62 on which the mice were treated with saline or LPS via intratracheal instillation. Cigarette smoke exposure increased the airway inflammatory cell numbers, mucus production, and different inflammatory mediators, including C-reactive protein (CRP) and keratinocyte-derived chemokine (KC), in bronchoalveolar lavage (BAL) fluid and serum. LPS did not further impact airway inflammatory cell numbers or mucus production but decreased inflammatory mediator levels in BAL fluid. T helper (Th) 1 cells were enhanced in the spleen after cigarette smoke exposure; however, in combination with LPS, cigarette exposure caused an increase in Th1 and Th2 cells. Histomorphological changes were observed in the proximal small intestine after cigarette smoke exposure, and addition of LPS had no effect. Cigarette smoke activated the intestinal immune network for IgA production in the distal small intestine that was associated with increased fecal sIgA levels and enlargement of Peyer's patches. Cigarette smoke plus LPS decreased fecal sIgA levels and the size of Peyer's patches. In conclusion, cigarette smoke with or without LPS affects intestinal health as observed by changes in intestinal histomorphology and immune network for IgA production. Elevated systemic mediators might play a role in the lung-gut cross talk. These findings contribute to a better understanding of intestinal disorders related to COPD.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Animals , Bronchoalveolar Lavage Fluid , Cigarette Smoking/adverse effects , Disease Models, Animal , Homeostasis , Immunoglobulin A/adverse effects , Immunoglobulin A/metabolism , Immunoglobulin A, Secretory/metabolism , Immunoglobulin A, Secretory/pharmacology , Lipopolysaccharides/adverse effects , Lung/metabolism , Mice , Pulmonary Disease, Chronic Obstructive/metabolism , Nicotiana
5.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L251-L265, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35699308

ABSTRACT

Brain-related comorbidities are frequently observed in chronic obstructive pulmonary disease (COPD) and are related to increased disease progression and mortality. To date, it is unclear which mechanisms are involved in the development of brain-related problems in COPD. In this study, a cigarette smoke and lipopolysaccharide (LPS) exposure murine model was used to induce COPD-like features and assess the impact on brain and behavior. Mice were daily exposed to cigarette smoke for 72 days, except for days 42, 52, and 62, on which mice were intratracheally exposed to the bacterial trigger LPS. Emphysema and pulmonary inflammation as well as behavior and brain pathology were assessed. Cigarette smoke-exposed mice showed increased alveolar enlargement and numbers of macrophages and neutrophils in bronchoalveolar lavage. Cigarette smoke exposure resulted in lower body weight, which was accompanied by lower serum leptin levels, more time spent in the inner zone of the open field, and decreased claudin-5 and occludin protein expression levels in brain microvessels. Combined cigarette smoke and LPS exposure resulted in increased locomotion and elevated microglial activation in the hippocampus of the brain. These novel findings show that systemic inflammation observed after combined cigarette smoke and LPS exposure in this COPD model is associated with increased exploratory behavior. Findings suggest that neuroinflammation is present in the brain area involved in cognitive functioning and that blood-brain barrier integrity is compromised. These findings can contribute to our knowledge about possible processes involved in brain-related comorbidities in COPD, which is valuable for optimizing and developing therapy strategies.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Animals , Brain/metabolism , Cigarette Smoking/adverse effects , Disease Models, Animal , Inflammation/pathology , Lipopolysaccharides/adverse effects , Lung/metabolism , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/pathology , Nicotiana
6.
Front Neurosci ; 15: 738220, 2021.
Article in English | MEDLINE | ID: mdl-34744609

ABSTRACT

In recent years, the idea of the gut microbiota being involved in the pathogenesis of autism spectrum disorders (ASD) has attracted attention through numerous studies. Many of these studies report microbial dysregulation in the gut and feces of autistic patients and in ASD animal models. The host microbiota plays a large role in metabolism of ingested foods, and through the production of a range of metabolites it may be involved in neurodevelopmental disorders such as ASD. Two specific microbiota-derived host metabolites, p-cresol sulfate and 4-ethylphenyl sulfate, have been associated with ASD in both patients and animal models. These metabolites originate from bacterially produced p-cresol and 4-ethylphenol, respectively. p-Cresol and 4-ethylphenol are produced through aromatic amino acid fermentation by a range of commensal bacteria, most notably bacteria from the Clostridioides genus, which are among the dysregulated bacteria frequently detected in ASD patients. Once produced, these metabolites are suggested to enter the bloodstream, pass the blood-brain-barrier and affect microglial cells in the central nervous system, possibly affecting processes like neuroinflammation and microglial phagocytosis. This review describes the current knowledge of microbial dysbiosis in ASD and elaborates on the relevance and synthesis pathways of two specific ASD-associated metabolites that may form a link between the microbiota and the brain in autism. While the two discussed metabolites are promising candidates for biomarkers and (nutritional) intervention targets, more research into the role of these metabolites in ASD is required to causally connect these metabolites to ASD pathophysiology.

7.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576216

ABSTRACT

Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome-host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.


Subject(s)
Autism Spectrum Disorder/microbiology , Autism Spectrum Disorder/physiopathology , Gastrointestinal Microbiome , Behavior , Biomarkers/metabolism , Blood-Brain Barrier , Brain/physiology , Child , Child, Preschool , Feces , Female , Humans , Male , Metabolome , Neurotransmitter Agents/metabolism , Polysaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...