Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(1): e0297062, 2024.
Article in English | MEDLINE | ID: mdl-38277393

ABSTRACT

A molecular survey of native and adventive psyllids in the central Macaronesian islands provides the first comprehensive phylogenetic assessment of the origins of the psyllid fauna of the Canary and Madeira archipelagos. We employ a maximum likelihood backbone constraint analysis to place the central Macaronesian taxa within the Psylloidea mitogenome phylogeny. The native psyllid fauna in these central Macaronesian islands results from an estimated 26 independent colonization events. Island host plants are predicted by host plants of continental relatives in nearly all cases and six plant genera have been colonized multiple times (Chamaecytisus, Convolvulus, Olea, Pistacia, Rhamnus, and Spartocytisus) from the continent. Post-colonization diversification varies from no further cladogenesis (18 events, represented by a single native taxon) to modest in situ diversification resulting in two to four native taxa and, surprisingly, given the diverse range of islands and habitats, only one substantial species radiation with more than four native species. Specificity to ancestral host plant genera or family is typically maintained during in situ diversification both within and among islands. Characterization of a recently discovered island radiation consisting of four species on Convolvulus floridus in the Canary Islands shows patterns and rates of diversification that reflect island topographic complexity and geological dynamism. Although modest in species diversity, this radiation is atypical in diversification on a single host plant species, but typical in the primary role of allopatry in the diversification process.


Subject(s)
Convolvulaceae , Convolvulus , Hemiptera , Animals , Phylogeny , Hemiptera/genetics , Spain
2.
Annu Rev Entomol ; 69: 277-302, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37738463

ABSTRACT

Psyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.


Subject(s)
Hemiptera , Life History Traits , Animals , Hemiptera/microbiology , Phylogeny , Bacteria , Biology
3.
BMC Res Notes ; 16(1): 322, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941051

ABSTRACT

OBJECTIVES: DNA Barcoding has proven to be a reliable method for rapid insect identification. The success of this method is based on the amplification of a specific region, the 'Folmer' barcode region at the 5´ start of the cytochrome c oxidase 1 gene (cox1), with universal primers. Previous studies showed failures of standard "universal" primers to amplify this region in psyllids. The aim of the study was the design of a new alternative more reliable primer combination for taxa of the superfamily Psylloidea and its comparison with the performance of the standard "universal" Folmer-primers. RESULTS: A newly designed degenerate forward primer LCOP-F was developed following comparison of the sequence alignment of the priming site of "universal" primer LCO1490 and the standard insect forward primer LepF1. When combined with the "universal" reverse primer, HCO2198, this new primer pairing was able to generate barcode sequence for all 36 species in 20 genera across the five families of psyllids tested in this study, and these primers were found to be more universally reliable across psyllid taxa than other primer pairs tested.


Subject(s)
Aphids , Hemiptera , Animals , DNA Barcoding, Taxonomic/methods , Hemiptera/genetics , Aphids/genetics , DNA Primers/genetics , Electron Transport Complex IV/genetics
4.
Syst Biol ; 72(6): 1220-1232, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37449764

ABSTRACT

Despite the economic, ecological, and scientific importance of the genera Salix L. (willows) and Populus L. (poplars, cottonwoods, and aspens) Salicaceae, we know little about the sources of differences in species diversity between the genera and of the phylogenetic conflict that often confounds estimating phylogenetic trees. Salix subgenera and sections, in particular, have been difficult to classify, with one recent attempt termed a "spectacular failure" due to a speculated radiation of the subgenera Vetrix and Chamaetia. Here, we use targeted sequence capture to understand the evolutionary history of this portion of the Salicaceae plant family. Our phylogenetic hypothesis was based on 787 gene regions and identified extensive phylogenetic conflict among genes. Our analysis supported some previously described subgeneric relationships and confirmed the polyphyly of others. Using an fbranch analysis, we identified several cases of hybridization in deep branches of the phylogeny, which likely contributed to discordance among gene trees. In addition, we identified a rapid increase in diversification rate near the origination of the Vetrix-Chamaetia clade in Salix. This region of the tree coincided with several nodes that lacked strong statistical support, indicating a possible increase in incomplete lineage sorting due to rapid diversification. The extraordinary level of both recent and ancient hybridization in both Salix and Populus have played important roles in the diversification and diversity in these two genera.


Subject(s)
Populus , Salix , Phylogeny , Salix/genetics , Populus/genetics , Biological Evolution , Hybridization, Genetic
5.
BMC Res Notes ; 16(1): 87, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221603

ABSTRACT

OBJECTIVE: Sidalcea is a genus of flowering plants restricted to the west coast of North America, commonly known as checkermallows. Remarkably, of the ~ 30 recognized species, 16 are of conservation concern (vulnerable, imperilled or critically imperilled). To facilitate biological studies in this genus, and in the wider Malvaceae, we have sequenced the whole plastid genome of Sidalcea hendersonii. This will allow us both to check those regions already developed as general Malvaceae markers in a previous study, and to search for new regions. RESULTS: By comparing the Sidalcea genome to that of Althaea, we have identified a hypervariable circa 1 kb region in the short single copy region. This region shows promise for examining phylogeographic pattern, hybridization and haplotype diversity. Remarkably, considering the conservation of plastome architecture between Sidalcea and Althaea, the former has a 237 bp deletion in the otherwise highly conserved inverted repeat region. Newly designed primers provide a PCR assay to determine presence of this indel across the Malvaceae. Screening of previously designed chloroplast microsatellite markers indicates two markers with variation within S. hendersonii that would be useful in future population conservation genetics.


Subject(s)
Malvaceae , Northwestern United States , Biological Assay , Chloroplasts , DNA Primers
6.
Biodivers Data J ; 11: e101257, 2023.
Article in English | MEDLINE | ID: mdl-38327306

ABSTRACT

Background: Phalarisarundinacea L. (reed canary grass) is a widely occurring grass throughout the Northern Hemisphere. In North America, it is thought to consist of introduced agricultural forms from Europe as well as native populations. New information: During a survey of Phalarisarundinacea in western Canada, we discovered two distinct ribotypes in the sequences of the internal transcribed spacer (ITS) of the nuclear ribosomal DNA: one full length (ITS-long) and one with a seven base pair deletion (ITS-short). In addition, ITS-long plants have fixed heterozygosity indicating possible polyploidy. Phylogenetic analysis reveals that ITS-short is a unique ribotype that characterises an intraspecific clade. We designed an efficient PCR-based assay that allows sizing of a 238/245 base pair fragment in a capillary sequencer. This approach provides a novel marker that could be useful in future surveys of Phalarisarundinacea.

7.
Arthropod Struct Dev ; 66: 101138, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35074654

ABSTRACT

Psyllids perform duetting via vibrational signals between genders that are important in pre-copulation species specific recognition. To date, vibrational behavior has been recorded in more than 100 species of psyllid, which is still only a small fraction of the ∼4000 described species. In this overview, we categorize the duet behavior into (1) reciprocal duets, (2) engaged duets, (3) three-way duets and (4) loose duets. In species with notable signal differences between genders, typically the male possesses a longer, more complex signal, which is emitted at a higher frequency compared to those of the females. Vibrational signals exhibit species specific characteristics that are taxonomically informative in some cases. Despite only a limited number of vibrational communication studies incorporating phylogenetic analyses, these reveal that signals can have reliable systematic information, but also that evolutionary and/or environmental factors may influence signal characteristics in ways that confound phylogenetic signal. Other possible strategies employed in mate finding in psyllids are chemical and visual signals. The most likely mechanism of vibrational signal production in psyllids involves stridulation between forewing and thorax. In some applied approaches, methods exploiting vibrational signals to disrupt mating may be effective to control psyllid pests in the field.


Subject(s)
Hemiptera , Animals , Communication , Female , Male , Phylogeny , Species Specificity , Vibration
8.
Front Microbiol ; 12: 739763, 2021.
Article in English | MEDLINE | ID: mdl-34659173

ABSTRACT

Sap-feeding insects in the order Hemiptera associate with obligate endosymbionts that are required for survival and facultative endosymbionts that can potentially modify resistance to stress, enemies, development, and reproduction. In the superfamily Psylloidea, the jumping plant lice (psyllids), less is known about the diversity and prevalence of their endosymbionts compared to other sap-feeding pests such as aphids (Aphididae). To address this knowledge gap, using 16S rRNA sequencing we identify symbionts across divergent psyllid host lineages from around the world. Taking advantage of a new comprehensive phylogenomic analyses of Psylloidea, we included psyllid samples from 44 species of 35 genera of five families, collected from 11 international locations for this study. Across psyllid lineages, a total of 91 OTUs were recovered, predominantly of the Enterobacteriaceae (68%). The diversity of endosymbionts harbored by each psyllid species was low with an average of approximately 3 OTUs. Two clades of endosymbionts (clade 1 and 2), belonging to Enterobacteriaceae, were identified that appear to be long term endosymbionts of the psyllid families Triozidae and Psyllidae, respectively. We also conducted high throughput metagenomic sequencing on three Ca. Liberibacter infected psyllid species (Russelliana capsici, Trichochermes walkeri, and Macrohomotoma gladiata), initially identified from 16S rRNA sequencing, to obtain more genomic information on these putative Liberibacter plant pathogens. The phylogenomic analyses from these data identified a new Ca. Liberibacter species, Candidatus Liberibacter capsica, that is a potential pathogen of solanaceous crops. This new species shares a distant ancestor with Ca. L. americanus, which occurs in the same range as R. capsici in South America. We also detected the first association between a psyllid specializing on woody hosts and the Liberibacter species Ca. L. psyllaurous, which is a globally distributed pathogen of herbaceous crop hosts in the Solanaceae. Finally, we detected a potential association between a psyllid pest of figs (M. gladiata) and a Ca. Liberibacter related to Ca. L. asiaticus, which causes severe disease in citrus. Our findings reveal a wider diversity of associations between facultative symbionts and psyllids than previously reported and suggest numerous avenues for future work to clarify novel associations of ecological, evolutionary, and pathogenic interest.

9.
Biodivers Data J ; 8: e53788, 2020.
Article in English | MEDLINE | ID: mdl-32508511

ABSTRACT

Background Psyllids are oligophagous phytophagous insects with many specialist willow (Salix spp.) feeding species in two genera (Cacopsylla and Bactericera). We examine the patterns of distribution and co-occurrence of willow-feeding species at 42 willow sites across Europe forming a transect from Greece (lat. 38.8 °N) to arctic Norway (lat. 70.6 °N). The transect and sites have been described in previous papers. New information A total of 1245 individual psyllids were examined from 23 species of willow over the transect, representing 17 willow-feeding species (11 Cacopsylla and 6 Bactericera). Numerous species were very widely distributed, with two species, Bactericera albiventris (Foerster, 1848) and Cacopsylla pulchra (Zetterstedt, 1840), occurring from Greece to Finland. Other widespread species (Romania to Finland) were Cacopsylla ambigua (Foerster, 1848) and Bactericera curvatinervis (Foerster, 1848). The mean number of psyllid species per site was 2.4 (1.3 Cacopsylla, 1.1 Bactericera).

10.
Biodivers Data J ; 8: e52881, 2020.
Article in English | MEDLINE | ID: mdl-32549748

ABSTRACT

BACKGROUND: Curculionid beetles associated with willow (Salix spp.) were surveyed at 42 sites across Europe, from Greece (lat. 38.8 °N) to arctic Norway (lat. 69.7 °N). DNA sequence data provide additional verification of identifications and geographic clustering. NEW INFORMATION: In all, 73 curculionid species were collected from willows, of which seven were particularly abundant. The most widespread species were: Acalyptus carpini Fabricius, 1793 at 15 sites; Tachyerges stigma Germar, 1821 at 13 sites; Phyllobius oblongus (Linnaeus, 1758) at 11 sites; Phyllobius maculicornis Germar, 1824 at 10 sites; and Archarius salicivorus (Paykull, 1792), Melanapion minimum (Herbst, 1797), and Phyllobius cf. pyri (Linnaeus, 1758) all at nine sites. The mean number of curculionid species collected on willow at each site was 5.5 (range 0-14). Compared to chrysomelids, curculionids were richer in species but the species had relatively low average abundance. Widespread curculionid species appear to have scattered and patchy observed distributions with limited geographical structuring in our data. However, deeper sampling (e.g. over multiple seasons and years), would give a better indication of distribution, and may increase apparent geographical structuring. There is some site-to-site variation in colour in a few taxa, but little notable size variation. DNA barcoding, performed on some of the more common species, provides clear species clusters and definitive separation of the taxonomically more challenging species, as well as some interesting geographic insights. Our northernmost sample of Phyllobius oblongus is unique in clustering with Canadian samples of this species. On the other hand, our samples of Acalyptus carpini cluster with European samples and are distinct from a separate Canadian cluster of this species. We provide the first available DNA sequences for Phyllobius thalassinus Gyllenhal, 1834 (Hungary).

11.
Biodivers Data J ; 7: e46663, 2019.
Article in English | MEDLINE | ID: mdl-31736630

ABSTRACT

Occurrence patterns of chrysomelid beetles (Coleoptera: Chrysomelidae), associated with willow (Salix spp.) at 42 sites across Europe, have previously been described. The sites form a transect from Greece (lat. 38.8 °N) to arctic Norway (lat. 69.7 °N). This paper reports additional records and the results of DNA sequencing in certain genera. Examination of further collections from the transect has added 13 species in the genera Aphthona, Chrysomela, Cryptocephalus, Epitrix, Galerucella (2 spp.), Gonioctena, Phyllotreta (2 spp.), Pachybrachis (3 spp.) and Syneta. We also report the sequencing of the DNA regions cytochrome oxidase 1 (CO1) and cytochrome B (cytB) for a number of samples in the genera Plagiodera, Chrysomela, Gonioctena, Phratora, Galerucella and Crepidodera. The cytB sequences are the first available for some of these taxa. The DNA barcoding largely confirmed previous identifications but allowed a small number of re-assignments between related species. Most notably, however, it was evident that the southernmost material (Greece and Bulgaria) of specimens, previously treated as Crepidodera aurata sens. lat., belonged to a distinctive molecular cluster. Morphological re-examination revealed these to be C. nigricoxis Allard, 1878. This is an example of how morphotaxonomy and DNA barcoding can work iteratively to refine identification. Our sequences for C. nigricoxis appear to be the first available for this taxon. Finally, there is little geographic structure evident, even in widely dispersed species.

12.
AoB Plants ; 11(1): ply071, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30687492

ABSTRACT

We report the investigation of an Aquilegia flavescens × A. formosa population in British Columbia that is disjunct from its parents-the latter species is present locally but ecologically separated, while the former is entirely absent. To confirm hybridity, we used multivariate analysis of floral characters of field-sampled populations to ordinate phenotypes of putative hybrids in relation to those of the parental species. Microsatellite genotypes at 11 loci from 72 parental-type and putative hybrid individuals were analysed to assess evidence for admixture. Maternally inherited plastid sequences were analysed to infer the direction of hybridization and test hypotheses on the origin of the orphan hybrid population. Plants from the orphan hybrid population are on average intermediate between typical A. formosa and A. flavescens for most phenotypes examined and show evidence of genetic admixture. This population lies beyond the range of A. flavescens, but within the range of A. formosa. No pure A. flavescens individuals were observed in the vicinity, nor is this species known to occur within 200 km of the site. The hybrids share a plastid haplotype with local A. formosa populations. Alternative explanations for this pattern are evaluated. While we cannot rule out long-distance pollen dispersal followed by proliferation of hybrid genotypes, we consider the spread of an A. formosa plastid during genetic swamping of a historical A. flavescens population to be more parsimonious.

13.
Proc Natl Acad Sci U S A ; 115(50): 12775-12780, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30478043

ABSTRACT

Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.


Subject(s)
Insecta/genetics , Animals , Calibration , Ecosystem , Fossils , Genome, Mitochondrial/genetics , Phylogeny
14.
Zookeys ; (758): 75-113, 2018.
Article in English | MEDLINE | ID: mdl-29844713

ABSTRACT

The endemic Hawaiian genus Swezeyana Caldwell, 1940 is highly distinctive due to the extremely long genal processes. In addition, some of the immatures are ornamented with extraordinary tubercles and tentacles. Two Swezeyana species are redescribed, and seven new species are described, bringing the total number of species in the genus to nine. All species are hosted by a single, endemic host plant, Planchonella sandwicensis (Sapotaceae), which is distributed across all major islands in the archipelago. The majority of Swezeyana species are single island endemics. A sister taxon pair is found sympatrically on the same individual plants on Kauai, and putative sister or at least closely related species are also found sympatrically on Oahu and Hawaii, suggesting these taxa may have diversified in sympatry. However, there is no observed ecological niche partitioning, despite some striking morphological diversity, as all Swezeyana species have free-living immatures that are found on the leaf surface, and therefore no apparent biological shifts are coincident with occupying the same host plant. Two species groups are represented by strikingly different female terminalia structure and endoskeletal development, although ovipositor structure is very similar between the two groups. Mitochondrial DNA barcodes (COI and cytB) are provided for eight of the nine species. A phylogenetic analysis of the mitochondrial barcode regions indicates species relationships within Swezeyana and provides a comparison of genetic divergence with other Hawaiian endemic genera.

15.
Zookeys ; (649): 1-163, 2017.
Article in English | MEDLINE | ID: mdl-28325970

ABSTRACT

The Hawaiian psyllids (Psylloidea, Triozidae) feeding on Metrosideros (Myrtaceae) constitute a remarkable radiation of more than 35 species. This monophyletic group has diversified on a single, highly polymorphic host plant species, Metrosideros polymorpha. Eleven Metrosideros-feeding species included in the Insects of Hawaii by Zimmerman are redescribed, and an additional 25 new species are described. Contrary to previous classifications that placed the Metrosideros-feeders in two genera, Trioza Foerster, 1848 and Kuwayama Crawford, 1911, all 36 named species are placed in Pariaconus Enderlein, 1926; and the relationship of this genus to other Pacific taxa within the family Triozidae, and other Austro-Pacific taxa feeding on host plants in Myrtaceae is clarified. The processes of diversification in Pariaconus include shifts in galling habit, geographic isolation within and between islands, and preferences for different morphotypes of the host plant. Four species groups are recognized: the bicoloratus and minutus groups are free-living or form pit galls, and together with the kamua group (composing all of the Kauai species) form a basal assemblage; the more derived closed gall species in the ohialoha group are found on all major islands except Kauai. The diversification of Pariaconus has likely occurred over several million years. Within island diversification is exemplified in the kamua group, and within species variation in the ohialoha group, but species discovery rates suggest this radiation remains undersampled. Mitochondrial DNA barcodes are provided for 28 of the 36 species. Genetic divergence, intraspecific genetic structure, and parallel evolution of different galling biologies and morphological traits are discussed within a phylogenetic framework. Outgroup analysis for the genus Pariaconus and ancestral character state reconstruction suggest pit-galling may be the ancestral state, and the closest outgroups are Palaearctic-Australasian taxa rather than other Pacific Metrosideros-feeders.

16.
Biodivers Data J ; (5): e10824, 2017.
Article in English | MEDLINE | ID: mdl-28325977

ABSTRACT

BACKGROUND: The common nettle (Urtica dioica L.) is co-associated with willows (Salix spp.) in riparian habitats across Europe. We sampled the widespread nettle psyllid, Trioza urticae (Linné, 1758), from Urtica in willow habitats on a megatransect of Europe from the Aegean to the Arctic Ocean. The aim of this study was to use an unusually widespread insect to assess the influence of geographic distances and natural geographic barriers on patterns of genetic variation and haplotype distribution. NEW INFORMATION: Phylogeographic analysis using DNA sequences of two mtDNA regions, COI and cytB, shows that T. urticae specimens are organized into four regional groups (southern, central, northern and arctic). These groups are supported by both phylogenetic analysis (four geographically-based clades) and network analysis (four major haplotype groups). The boundary between southern and central groups corresponds to the Carpathian Mountains and the boundary between the central and northern groups corresponds to the Gulf of Finland. Overall these groups form a latitudinal cline in genetic diversity, which decreases with increasing latitude.

17.
PLoS One ; 12(1): e0167764, 2017.
Article in English | MEDLINE | ID: mdl-28052088

ABSTRACT

Food security is threatened by newly emerging pests with increased invasive potential accelerated through globalization. The Neotropical jumping plant louse Russelliana solanicola Tuthill is currently a localized potato pest and probable vector of plant pathogens. It is an unusually polyphagous species and is widely distributed in and along the Andes. To date, introductions have been detected in eastern Argentina, southern Brazil and Uruguay. Species distribution models (SDMs) and trait comparisons based on contemporary and historical collections are used to estimate the potential spread of R. solanicola worldwide. We also extend our analyses to all described species in the genus Russelliana in order to assess the value of looking beyond pest species to predict pest spread. We investigate the extent to which data on geographical range and environmental niche can be effectively extracted from museum collections for comparative analyses of pest and non-pest species in Russelliana. Our results indicate that R. solanicola has potential for invasion in many parts of the world with suitable environmental conditions that currently have or are anticipated to increase potato cultivation. Large geographical ranges are characteristic of a morphological subgeneric taxon group that includes R. solanicola; this same group also has a larger environmental breadth than other groups within the genus. Ecological modelling using museum collections provides a useful tool for identifying emerging pests and developing integrated pest management programs.


Subject(s)
Crops, Agricultural/parasitology , Hemiptera/physiology , Pest Control , Solanum tuberosum/parasitology , Animals , Ecosystem , Geography , Host Specificity , Host-Parasite Interactions , Models, Theoretical , Principal Component Analysis , Quantitative Trait, Heritable , South America , Species Specificity , Statistics as Topic
18.
Appl Plant Sci ; 5(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29299394

ABSTRACT

PREMISE OF THE STUDY: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. METHODS: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. RESULTS: Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). DISCUSSION: Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa.

19.
Biodivers Data J ; (4): e10194, 2016.
Article in English | MEDLINE | ID: mdl-27956853

ABSTRACT

BACKGROUND: Chrysomelid beetles associated with willow (Salix spp.) were surveyed at 41 sites across Europe, from Greece (lat. 38.8 °N) to arctic Norway (lat. 69.7 °N). NEW INFORMATION: In all, 34 willow-associated chrysomelid species were encountered, of which eight were very abundant. The abundant species were: Crepidodera aurata Marsham, 1802 at 27 sites, Phratora vitellinae (Linnaeus, 1758) at 21 sites, Galerucella lineola (Fabricius, 1781) at 19 sites, Crepidodera fulvicornis (Fabricius, 1792) at 19 sites, Plagiodera versicolora (Laicharting, 1781) at 11 sites, Crepidodera plutus (Latreille, 1804) at nine sites, Chrysomela vigintipunctata Scopoli, 1763 at nine sites and Gonioctena pallida (Linnaeus, 1758) at eight sites. The mean number of willow associated chrysomelid morphospecies at each site was 4.2. Around 20% of the total variance in chrysomelid distribution could be accounted for by latitude, but this is mainly due to distinctive occurrence patterns at the northern and southern parts of the transect. There was a paucity of chrysomelids at Greek sites and a distinctively northern faunal composition at sites north of Poland. Considerable site-to-site variation in colour was noted, except in G. lineola, which was chromatically invariant.

20.
Biodivers Data J ; (4): e10003, 2016.
Article in English | MEDLINE | ID: mdl-27932918

ABSTRACT

BACKGROUND: The common stinging nettle, Urtica dioica L. sensu lato, is an invertebrate "superhost", its clonal patches maintaining large populations of insects and molluscs. It is extremely widespread in Europe and highly variable, and two ploidy levels (diploid and tetraploid) are known. However, geographical patterns in cytotype variation require further study. NEW INFORMATION: We assembled a collection of nettles in conjunction with a transect of Europe from the Aegean to Arctic Norway (primarily conducted to examine the diversity of Salix and Salix-associated insects). Using flow cytometry to measure genome size, our sample of 29 plants reveals 5 diploids and 24 tetraploids. Two diploids were found in SE Europe (Bulgaria and Romania) and three diploids in S. Finland. More detailed cytotype surveys in these regions are suggested. The tetraploid genome size (2C value) varied between accessions from 2.36 to 2.59 pg. The diploids varied from 1.31 to 1.35 pg per 2C nucleus, equivalent to a haploid genome size of c. 650 Mbp. Within the tetraploids, we find that the most northerly samples (from N. Finland and arctic Norway) have a generally higher genome size. This is possibly indicative of a distinct population in this region.

SELECTION OF CITATIONS
SEARCH DETAIL
...