Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 12(1): 374, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36075888

ABSTRACT

Opioid exposure is known to cause transcriptomic changes in the nucleus accumbens (NAc). However, no studies to date have investigated cell type-specific transcriptomic changes associated with volitional opioid taking. Here, we use single nucleus RNA sequencing (snRNAseq) to comprehensively characterize cell type-specific alterations of the NAc transcriptome in rats self-administering morphine. One cohort of male Brown Norway rats was injected with acute morphine (10 mg/kg, i.p.) or saline. A second cohort of rats was allowed to self-administer intravenous morphine (1.0 mg/kg/infusion) for 10 consecutive days. Each morphine-experienced rat was paired with a yoked saline control rat. snRNAseq libraries were generated from NAc punches and used to identify cell type-specific gene expression changes associated with volitional morphine taking. We identified 1106 differentially expressed genes (DEGs) in the acute morphine group, compared to 2453 DEGs in the morphine self-administration group, across 27 distinct cell clusters. Importantly, we identified 1329 DEGs that were specific to morphine self-administration. DEGs were identified in novel clusters of astrocytes, oligodendrocytes, and D1R- and D2R-expressing medium spiny neurons in the NAc. Cell type-specific DEGs included Rgs9, Celf5, Oprm1, and Pde10a. Upregulation of Rgs9 and Celf5 in D2R-expressing neurons was validated by RNAscope. Approximately 85% of all oligodendrocyte DEGs, nearly all of which were associated with morphine taking, were identified in two subtypes. Bioinformatic analyses identified cell type-specific upstream regulatory mechanisms of the observed transcriptome alterations and downstream signaling pathways, including both novel and previously identified molecular pathways. These findings show that volitional morphine taking is associated with distinct cell type-specific transcriptomic changes in the rat NAc and highlight specific striatal cell populations and novel molecular substrates that could be targeted to reduce compulsive opioid taking.


Subject(s)
Morphine , Nucleus Accumbens , Analgesics, Opioid/pharmacology , Animals , Humans , Male , Morphine/pharmacology , Neurons/metabolism , Nucleus Accumbens/metabolism , Phosphoric Diester Hydrolases/metabolism , Rats , Transcriptome
2.
G3 (Bethesda) ; 10(5): 1647-1655, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32132168

ABSTRACT

Long interspersed element-1 retrotransposons (LINE-1 or L1) are ∼6 kb mobile DNA elements implicated in the origins of many Mendelian and complex diseases. The actively retrotransposing L1s are mostly limited to the L1 human specific (L1Hs) transcriptional active (Ta) subfamily. In this manuscript, we present REBELseq as a method for the construction of Ta subfamily L1Hs-enriched next-generation sequencing libraries and bioinformatic identification. REBELseq was performed on DNA isolated from NeuN+ neuronal nuclei from postmortem brain samples of 177 individuals and empirically-driven bioinformatic and experimental cutoffs were established. Putative L1Hs insertions passing bioinformatics cutoffs were experimentally validated. REBELseq reliably identified both known and novel Ta subfamily L1Hs insertions distributed throughout the genome. Differences in the proportion of individuals possessing a given reference or non-reference retrotransposon insertion were identified. We conclude that REBELseq is an unbiased, whole genome approach to the amplification and detection of Ta subfamily L1Hs retrotransposons.


Subject(s)
Genome, Human , Long Interspersed Nucleotide Elements , DNA Restriction Enzymes , High-Throughput Nucleotide Sequencing , Humans , Retroelements/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...