Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters











Publication year range
1.
Nano Lett ; 24(36): 11217-11223, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39158041

ABSTRACT

Achieving robust electrical contacts is crucial for realizing the promise of monolayer 2D semiconductors such as semiconducting transition metal dichalcogenides (s-TMDs) in electronics. Despite recent breakthroughs, a gap remains between the experimental and theoretical understanding of metal-s-TMDs contacts. This study explores bismuth semimetal contacts to monolayer MoSe2, using a platform that minimizes experimental sources of uncertainty; we combine contact-front and contact-end measurements to measure key parameters like specific resistivity (ρc) and transfer length (Lt). We find that the resistivity of MoSe2 under the contacts is enhanced due to charge transfer that can be modeled using a self-consistent approach. In contrast, ab initio calculations of the interlayer charge transfer rate are inconsistent with the measured value of ρc, highlighting the need for new theoretical approaches.

2.
Nanoscale Adv ; 6(11): 2823-2829, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817431

ABSTRACT

The fascinating realm of strain engineering and wetting transitions in two-dimensional (2D) materials takes place when placed on a two-dimensional array of nanopillars or one-dimensional rectangular grated substrates. Our investigation encompasses a diverse set of atomically thin 2D materials, including transition metal dichalcogenides, hexagonal boron nitride, and graphene, with a keen focus on the impact of van der Waals adhesion energies to the substrate on the wetting/dewetting behavior on nanopatterned substrates. We find a critical aspect ratio of the nanopillar or grating heights to the period of the pattern when the wetting/dewetting transition occurs. Furthermore, energy hysteresis analysis reveals dynamic detachment and re-engagement events during height adjustments, shedding light on energy barriers of 2D monolayer transferred on patterned substrates. Our findings offer avenues for strain engineering in 2D materials, leading to promising prospects for future technological applications.

3.
Phys Rev Lett ; 132(8): 089901, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457742

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.109.236604.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513111

ABSTRACT

This work presents a comprehensive numerical study for designing a lead-free, all-inorganic, and high-performance solar cell based on Cs2TiI6 halide perovskite with all-inorganic carrier transport layers. A rigorous ab initio density-functional theory (DFT) calculation is performed to identify the electronic and optical properties of Cs2TiI6 and, upon extraction of the existing experimental data of the material, the cell is designed and optimized to the degree of practical feasibility. Consequently, a theoretical power conversion efficiency (PCE) of 21.17% is reported with inorganic TiO2 and CuI as carrier transport layers. The calculated absorption coefficient of Cs2TiI6 reveals its enormous potential as an alternative low-bandgap material for different solar cell applications. Furthermore, the role of different point defects and the corresponding defect densities on cell performance are investigated. It is found that the possible point defects in Cs2TiI6 can form both the shallow and deep defect states, with deep defect states having a prominent effect on cell performance. For both defect states, the cell performance deteriorates significantly as the defect density increases, which signifies the importance of high-quality material processing for the success of Cs2TiI6-based perovskite solar cell technology.

5.
Nanomaterials (Basel) ; 13(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299677

ABSTRACT

One-dimensional carbon nanotubes (CNTs) are promising for future nanoelectronics and optoelectronics, and an understanding of electrical contacts is essential for developing these technologies. Although significant efforts have been made in this direction, the quantitative behavior of electrical contacts remains poorly understood. Here, we investigate the effect of metal deformations on the gate voltage dependence of the conductance of metallic armchair and zigzag CNT field effect transistors (FETs). We employ density functional theory calculations of deformed CNTs under metal contacts to demonstrate that the current-voltage characteristics of the FET devices are qualitatively different from those expected for metallic CNT. We predict that, in the case of armchair CNT, the gate-voltage dependence of the conductance shows an ON/OFF ratio of about a factor of two, nearly independent of temperature. We attribute the simulated behavior to modification of the band structure under the metals caused by deformation. Our comprehensive model predicts a distinct feature of conductance modulation in armchair CNTFETs induced by the deformation of the CNT band structure. At the same time, the deformation in zigzag metallic CNTs leads to a band crossing but not to a bandgap opening.

6.
Phys Rev Lett ; 130(17): 176303, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37172236

ABSTRACT

The electrical conductivity of a macroscopic assembly of nanomaterials is determined through a complex interplay of electronic transport within and between constituent nano-objects. Phonons play dual roles in this situation: their increased populations tend to reduce the conductivity via electron scattering, while they can boost the conductivity by assisting electrons to propagate through the potential-energy landscape. We identified a phonon-assisted coherent electron transport process between neighboring nanotubes in temperature-dependent conductivity measurements on a macroscopic film of armchair single-wall carbon nanotubes. Through atomistic modeling of electronic states and calculations of both electronic and phonon-assisted junction conductances, we conclude that phonon-assisted conductance is the dominant mechanism for observed high-temperature transport in armchair carbon nanotubes. The unambiguous manifestation of coherent intertube dynamics proves a single-chirality armchair nanotube film to be a unique macroscopic solid-state ensemble of nano-objects promising for the development of room-temperature coherent electronic devices.

7.
Light Sci Appl ; 12(1): 59, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36864035

ABSTRACT

Emerging photo-induced excitonic processes in transition metal dichalcogenide (TMD) heterobilayers, e.g., interplay of intra- and inter-layer excitons and conversion of excitons to trions, allow new opportunities for ultrathin hybrid photonic devices. However, with the associated large degree of spatial heterogeneity, understanding and controlling their complex competing interactions in TMD heterobilayers at the nanoscale remains a challenge. Here, we present an all-round dynamic control of interlayer-excitons and -trions in a WSe2/Mo0.5 W0.5 Se2 heterobilayer using multifunctional tip-enhanced photoluminescence (TEPL) spectroscopy with <20 nm spatial resolution. Specifically, we demonstrate the bandgap tunable interlayer excitons and the dynamic interconversion between interlayer-trions and -excitons, through the combinational tip-induced engineering of GPa-scale pressure and plasmonic hot electron injection, with simultaneous spectroscopic TEPL measurements. This unique nano-opto-electro-mechanical control approach provides new strategies for developing versatile nano-excitonic/trionic devices using TMD heterobilayers.

8.
Nanomaterials (Basel) ; 12(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36364505

ABSTRACT

Charged excitons or trions are essential for optical spectra in low-dimensional doped monolayers (ML) of transitional metal dichalcogenides (TMDC). Using a direct diagonalization of the three-body Hamiltonian, we calculate the low-lying trion states in four types of TMDC MLs as a function of doping and dielectric environment. We show that the fine structure of the trion is the result of the interplay between the spin-valley fine structure of the single-particle bands and the exchange interaction. We demonstrate that by variations of the doping and dielectric environment, the fine structure of the trion energy can be tuned, leading to anticrossing of the bright and dark states, with substantial implications for the optical spectra of the TMDC ML.

9.
Phys Rev Lett ; 128(20): 206602, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657858

ABSTRACT

The weak acoustic phonon scattering in graphene monolayer leads to high mobilities even at room temperatures. We identify the dominant role of the shear phonon mode scattering on the carrier mobility in AB-stacked graphene bilayer, which is absent in monolayer graphene. Using a microscopic tight-binding model, we reproduce experimental temperature dependence of mobilities in high-quality boron nitride encapsulated bilayer samples at temperatures up to ∼200 K. At elevated temperatures, the surface polar phonon scattering from boron nitride substrate contributes significantly to the measured mobilities of 15 000 to 20000 cm^{2}/Vs at room temperature and carrier concentration n∼10^{12} cm^{-2}. A screened surface polar phonon potential for a dual-encapsulated bilayer and transferable tight-binding model allows us to predict mobility scaling with temperature and band gap for both electrons and holes in agreement with the experiment.

10.
Opt Express ; 30(6): 9000-9007, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299339

ABSTRACT

We present numerical simulations of scattering-type scanning near-field optical microscopy (s-SNOM) of 1D plasmonic graphene junctions. A comprehensive analysis of simulated s-SNOM spectra is performed for three types of junctions. We find conditions when the conventional interpretation of the plasmon reflection coefficients from s-SNOM measurements does not apply. Our approach can be used for other conducting 2D materials to provide a comprehensive understanding of the s-SNOM techniques for probing the local transport properties of 2D materials.

11.
ACS Nano ; 15(6): 10472-10479, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34105938

ABSTRACT

Carbon nanotube (CNT) photodiodes are a promising system for high-efficiency photocurrent generation due to the strong Coulomb interactions that can drive carrier multiplication. If the Coulomb interactions are too strong, however, exciton formation can hamper photocurrent generation. Here, we explore, experimentally and theoretically, the effect of the environmental dielectric constant (εenv) on the photocurrent generation process in CNTs. We study individual ultraclean CNTs of known chiral index in a vacuum or dry nitrogen gas (εenv = 1) and oil (εenv = 2.15). The efficiency of photocurrent generation improves by more than an order of magnitude in oil. Two mechanisms explain this improvement. First, the refractive index of the environment optimizes the interference between incident and reflected light. Second, exciton binding energies are reduced in oil, changing the relaxation pathways of photoexcited carriers. We varied the axial electric field in the pn junction from 4 to 14 V/µm. Our measurements at high field indicate that autoionization of second-subband excitons can coexist with carrier multiplication. Dielectric screening makes this coexistence regime more accessible and allows us to reach photocurrent quantum yields greater than 100%.

12.
J Phys Chem Lett ; 12(19): 4674-4680, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33979171

ABSTRACT

We report the first-principles study of small polarons in the most stable two-dimensional pnictogen allotropes: blue and black phosphorene and arsenene. While both cations and anions of small hydrogen-passivated clusters show charge localization and local lattice distortions, only the hole polaron in the blue allotrope is stable in the infinite size cluster limit. The adiabatic polaron relaxation energy is found to be 0.1 eV for phosphorene and 0.15 eV for arsenene. The polaron is localized on lone-pair orbitals with half of the extra charge distributed among 13 atoms. In the blue phosphorene, these orbitals form the valence band's top with a relatively flat band dispersion. However, in the black phosphorene, lone-pair orbitals hybridize with bonding orbitals, which explains the difference in hole localization strength between the two topologically equivalent allotropes. The polaron's adiabatic barriers for motion are small compared to the most strongly coupled phonon frequency, implying the polaron barrierless motion.

13.
ACS Nano ; 15(3): 5762-5772, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33705651

ABSTRACT

Room-temperature Fermi-Dirac electron thermal excitation in conventional three-dimensional (3D) or two-dimensional (2D) semiconductors generates hot electrons with a relatively long thermal tail in energy distribution. These hot electrons set a fundamental obstacle known as the "Boltzmann tyranny" that limits the subthreshold swing (SS) and therefore the minimum power consumption of 3D and 2D field-effect transistors (FETs). Here, we investigated a graphene (Gr)-enabled cold electron injection where the Gr acts as the Dirac source to provide the cold electrons with a localized electron density distribution and a short thermal tail at room temperature. These cold electrons correspond to an electronic refrigeration effect with an effective electron temperature of ∼145 K in the monolayer MoS2, which enables the transport factor lowering and thus the steep-slope switching (across for three decades with a minimum SS of 29 mV/decade at room temperature) for a monolayer MoS2 FET. Especially, a record-high sub-60-mV/decade current density (over 1 µA/µm) can be achieved compared to conventional steep-slope technologies such as tunneling FETs or negative capacitance FETs using 2D or 3D channel materials. Our work demonstrates the potential of a 2D Dirac-source cold electron transistor as a steep-slope transistor concept for future energy-efficient nanoelectronics.

14.
J Chem Phys ; 153(4): 044132, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752700

ABSTRACT

We demonstrate that the temperature and doping dependencies of the photoluminescence (PL) spectra of a doped MoS2 monolayer have several peculiar characteristics defined by the trion radiative decay. While only zero-momentum exciton states are coupled to light, radiative recombination of non-zero momentum trions is also allowed. This leads to an asymmetric broadening of the trion spectral peak and redshift of the emitted light with increasing temperature. The lowest energy trion state is dark, which is manifested by the sharply non-monotonic temperature dependence of the PL intensity. Our calculations combine the Dirac model for the single-particle states, with parameters obtained from the first-principles calculations, and the direct solution of the three-particle problem within the Tamm-Dancoff approximation. The numerical results are well captured by a simple model that yields analytical expressions for the temperature dependencies of the PL spectra.

15.
Nano Lett ; 20(1): 433-440, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31847521

ABSTRACT

Carbon nanotube (CNT) photodiodes have the potential to convert light into electrical current with high efficiency. However, previous experiments have revealed the photocurrent quantum yield (PCQY) to be well below 100%. In this work, we show that the axial electric field increases the PCQY of CNT photodiodes. Under optimal conditions, our data suggest PCQY > 100%. We studied, both experimentally and theoretically, CNT photodiodes at room temperature using optical excitation corresponding to the S22, S33, and S44 exciton resonances. The axial electric field inside the pn junction was controlled using split gates that are capacitively coupled to the suspended CNT. Our results give new insight into the photocurrent generation pathways in CNTs and the field dependence and diameter dependence of PCQY.

16.
Opt Express ; 27(10): 13611-13623, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163822

ABSTRACT

In this letter, we report optical pump terahertz (THz) near-field probe (n-OPTP) and optical pump THz near-field emission (n-OPTE) experiments of graphene/InAs heterostructures. Near-field imaging contrasts between graphene and InAs using these newly developed techniques as well as spectrally integrated THz nano-imaging (THz s-SNOM) are systematically studied. We demonstrate that in the near-field regime (λ/6000), a single layer of graphene is transparent to near-IR (800 nm) optical excitation and completely "screens" the photo-induced far-infrared (THz) dynamics in its substrate (InAs). Our work reveals unique frequency-selective ultrafast dynamics probed at the near field. It also provides strong evidence that n-OPTE nanoscopy yields contrast that distinguishes single-layer graphene from its substrate.

17.
Phys Rev Lett ; 119(20): 207701, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29219374

ABSTRACT

Capillary and van der Waals forces cause nanotubes to deform or even collapse under metal contacts. Using ab initio band structure calculations, we find that these deformations reduce the band gap by as much as 30%, while fully collapsed nanotubes become metallic. Moreover, degeneracy lifting due to the broken axial symmetry, and wave functions mismatch between the fully collapsed and the round portions of a CNT, lead to a 3 times higher contact resistance. The latter we demonstrate by contact resistance calculations within the tight-binding approach.

18.
Adv Mater ; 29(31)2017 Aug.
Article in English | MEDLINE | ID: mdl-28628254

ABSTRACT

Layered transition metal dichalcogenide semiconductors, such as MoS2 and WSe2 , exhibit a range of fascinating properties and are being currently explored for a variety of electronic and optoelectronic devices. These properties include a low thermal conductivity and a large Seebeck coefficient, which make them promising for thermoelectric applications. Moreover, transition metal dichalcogenides undergo an indirect-to-direct bandgap transition when thinned down in thickness, leading to strong excitonic photo- and electroluminescence in monolayers. Here, it is demonstrated that a MoS2 monolayer sheet, freely suspended in vacuum over a distance of 150 nm, emits visible light as a result of Joule heating. Due to the poor transfer of heat to the contact electrodes, as well as the suppressed heat dissipation through the underlying substrate, the electron temperature can reach ≈1500-1600 K. The resulting narrow-band light emission from thermally populated exciton states is spatially located to an only ≈50 nm wide region in the center of the device and goes along with a negative differential electrical conductance of the channel.

19.
Nano Lett ; 13(8): 3531-8, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23899132

ABSTRACT

Comparing photoconductivity measurements, using p-n diodes formed along individual single-walled carbon nanotubes (SWNT), with modeling results, allows determination of the quantum efficiency, optical capture cross section, and oscillator strength of the first (E11) and second (E22) excitonic transitions of SWNTs. This is in the infrared region of the spectrum, where little experimental work on SWNT optical absorption has been reported to date. We estimate quantum efficiency (η) ~1-5% and provide a correlation of η, capture cross section, and oscillator strength for E11 and E22 with nanotube diameter. This study uses the spectral weight of the exciton resonances as the determining parameter in optical measurements.

20.
Nano Lett ; 12(7): 3431-6, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22646513

ABSTRACT

Wrinkling is a ubiquitous phenomenon in two-dimensional membranes. In particular, in the large-scale growth of graphene on metallic substrates, high densities of wrinkles are commonly observed. Despite their prevalence and potential impact on large-scale graphene electronics, relatively little is known about their structural morphology and electronic properties. Surveying the graphene landscape using atomic force microscopy, we found that wrinkles reach a certain maximum height before folding over. Calculations of the energetics explain the morphological transition and indicate that the tall ripples are collapsed into narrow standing wrinkles by van der Waals forces, analogous to large-diameter nanotubes. Quantum transport calculations show that conductance through these "collapsed wrinkle" structures is limited mainly by a density-of-states bottleneck and by interlayer tunneling across the collapsed bilayer region. Also through systematic measurements across large numbers of devices with wide "folded wrinkles", we find a distinct anisotropy in their electrical resistivity, consistent with our transport simulations. These results highlight the coupling between morphology and electronic properties, which has important practical implications for large-scale high-speed graphene electronics.

SELECTION OF CITATIONS
SEARCH DETAIL