Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Ciênc. rural (Online) ; 52(9): e20210275, 2022. tab, graf
Article in English | VETINDEX | ID: biblio-1364731

ABSTRACT

When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually decrease over time.


Na modelagem de curvas de crescimento deve-se considerar que dados longitudinais podem apresentar autocorrelação residual, sendo que, se tal característica não é considerada, os resultados e inferências podem ser comprometidos. A abordagem bayesiana, que considera informações à priori sobre o fenômeno em estudo tem se mostrado eficiente na estimação de parâmetros. No entanto, como geralmente não é possível obter as distribuições marginais de forma analítica, faz-se necessário a utilização de algum método, como o método de reamostragem ponderada, para gerar amostras dessas distribuições e assim obter uma aproximação para as mesmas. Dentre as vantagens desse método, destaca-se a geração de amostras independentes e o fato de não ser necessário avaliar convergência. Diante desse contexto, o objetivo deste trabalho foi apresentar a modelagem não linear bayesiana do crescimento em altura de plantas do cafeeiro, irrigadas e não irrigadas (NI), considerando a autocorrelação residual e os modelos não lineares Logístico, Brody, von Bertalanffy e Richards. Em vista dos resultados, verificou-se que, para as plantas NI, o DIC e CPOc, indicaram que, dentre os modelos avaliados, o modelo Logístico é o que melhor descreve o crescimento em altura do cafeeiro ao longo do tempo. E, para as plantas irrigadas, esses mesmos critérios indicaram o modelo Brody. Assim, o crescimento da planta do cafeeiro não irrigado e irrigado seguiram padrões de crescimento distintos, a altura do cafeeiro não irrigado apresentou crescimento sigmoidal com taxa máxima de crescimento aos 726 dias após o plantio, já o cafeeiro irrigado inicia seu desenvolvimento com altas taxas de crescimento que vão diminuindo aos poucos com o tempo.


Subject(s)
Bayes Theorem , Nonlinear Dynamics , Coffea/growth & development , Reference Standards
2.
Ecology ; 101(11): e03115, 2020 11.
Article in English | MEDLINE | ID: mdl-32700802

ABSTRACT

Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data.


Subject(s)
Introduced Species , Mammals , Animals , Argentina , Biodiversity , Cattle , Chile , Dogs , Florida , Mexico
3.
Nagy‐Reis, Mariana B.; Oshima, Júlia Emi de Faria; Kanda, Claudia Zukeran; Palmeira, Francesca Belem Lopes; Melo, Fabiano Rodrigues de; Morato, Ronaldo Gonçalves; Bonjorne, Lilian; Magioli, Marcelo; Leuchtenberger, Caroline; Rohe, Fabio; Lemos, Frederico Gemesio; Martello, Felipe; Alves‐Eigenheer, Milene; Silva, Rafaela Aparecida da; Santos, Juliana Silveira dos; Priante, Camila Fátima; Bernardo, Rodrigo; Rogeri, Patricia; Assis, Julia Camara; Gaspar, Lucas Pacciullio; Tonetti, Vinicius Rodrigues; Trinca, Cristiano Trapé; Ribeiro, Adauto de Souza; Bocchiglieri, Adriana; Hass, Adriani; Canteri, Adriano; Chiarello, Adriano Garcia; Paglia, Adriano Pereira; Pereira, Adriele Aparecida; Souza, Agnis Cristiane de; Gatica, Ailin; Medeiro, Akyllam Zoppi; Eriksson, Alan; Costa, Alan Nilo; González‐Gallina, Alberto; Yanosky, Alberto A; Cruz, Alejandro Jesus de la; Bertassoni, Alessandra; Bager, Alex; Bovo, Alex Augusto Abreu; Mol, Alexandra Cravino; Bezerra, Alexandra Maria Ramos; Percequillo, Alexandre; Vogliotti, Alexandre; Lopes, Alexandre Martins Costa; Keuroghlian, Alexine; Hartley, Alfonso Christopher Zúñiga; Devlin, Allison L.; Paula, Almir de; García‐Olaechea, Alvaro; Sánchez, Amadeo; Aquino, Ana Carla Medeiros Morato; Srbek‐Araujo, Ana Carolina; Ochoa, Ana Cecilia; Tomazzoni, Ana Cristina; Lacerda, Ana Cristyna Reis; Bacellar, Ana Elisa de Faria; Campelo, Ana Kellen Nogueira; Victoria, Ana María Herrera; Paschoal, Ana Maria de Oliveira; Potrich, Ana Paula; Gomes, Ana Paula Nascimento; Olímpio, Ana Priscila Medeiros; Costa, Ana Raissa Cunha; Jácomo, Anah Tereza de Almeida; Calaça, Analice Maria; Jesus, Anamélia Souza; Barban, Ananda de Barros; Feijó, Anderson; Pagoto, Anderson; Rolim, Anderson Claudino; Hermann, Andiara Paula; Souza, Andiara Silos Moraes de Castro e; Alonso, André Chein; Monteiro, André; Mendonça, André Faria; Luza, André Luís; Moura, André Luis Botelho; Silva, André Luiz Ferreira da; Lanna, Andre Monnerat; Antunes, Andre Pinassi; Nunes, André Valle; Dechner, Andrea; Carvalho, Andrea Siqueira; Novaro, Andres Jose; Scabin, Andressa Barbara; Gatti, Andressa; Nobre, Andrezza Bellotto; Montanarin, Anelise; Deffaci, Ângela Camila; Albuquerque, Anna Carolina Figueiredo de; Mangione, Antonio Marcelo; Pinto, Antonio Millas Silva; Pontes, Antonio Rossano Mendes; Bertoldi, Ariane Teixeira; Calouro, Armando Muniz; Fernandes, Arthur; Ferreira, Arystene Nicodemo; Ferreguetti, Atilla Colombo; Rosa, Augusto Lisboa Martins; Banhos, Aureo; Francisco, Beatriz da Silva de Souza; Cezila, Beatriz Azevedo; Beisiegel, Beatriz de Mello; Thoisy, Benoit de; Ingberman, Bianca; Neves, Bianca dos Santos; Pereira‐Silva, Brenda; Camargo, Bruna Bertagni de; Andrade, Bruna da Silva; Santos, Bruna Silva; Leles, Bruno; Campos, Bruno Augusto Torres Parahyba; Kubiak, Bruno Busnello; França, Bruno Rodrigo de Albuquerque; Saranholi, Bruno Henrique; Mendes, Calebe Pereira; Devids, Camila Cantagallo; Pianca, Camila; Rodrigues, Camila; Islas, Camila Alvez; Lima, Camilla Angélica de; Lima, Camilo Ribeiro de; Gestich, Carla Cristina; Tedesco, Carla Denise; Angelo, Carlos De; Fonseca, Carlos; Hass, Carlos; Peres, Carlos A.; Kasper, Carlos Benhur; Durigan, Carlos Cesar; Fragoso, Carlos Eduardo; Verona, Carlos Eduardo; Rocha, Carlos Frederico Duarte; Salvador, Carlos Henrique; Vieira, Carlos Leonardo; Ruiz, Carmen Elena Barragán; Cheida, Carolina Carvalho; Sartor, Caroline Charão; Espinosa, Caroline da Costa; Fieker, Carolline Zatta; Braga, Caryne; Sánchez‐Lalinde, Catalina; Machado, Cauanne Iglesias Campos; Cronemberger, Cecilia; Luna, Cecília Licarião; Vechio, Christine Del; Bernardo, Christine Steiner S.; Hurtado, Cindy Meliza; Lopes, Cíntia M.; Rosa, Clarissa Alves da; Cinta, Claudia Cristina; Costa, Claudia Guimaraes; Zárate‐Castañeda, Claudia Paola; Novaes, Claudio Leite; Jenkins, Clinton N.; Seixas, Cristiana Simão; Martin, Cristiane; Zaniratto, Cristiane Patrícia; López‐Fuerte, Cristina Fabiola; Cunha, Cristina Jaques da; Brito De‐Carvalho, Crizanto; Chávez, Cuauhtémoc; Santos, Cyntia Cavalcante; Polli, Daiana Jeronimo; Buscariol, Daiane; Carreira, Daiane Cristina; Galiano, Daniel; Thornton, Daniel; Ferraz, Daniel da Silva; Lamattina, Daniela; Moreno, Daniele Janina; Moreira, Danielle Oliveira; Farias, Danilo Augusto; Barros‐Battesti, Darci Moraes; Tavares, Davi Castro; Braga, David Costa; Gaspar, Denise Alemar; Friedeberg, Diana; Astúa, Diego; Silva, Diego Afonso; Viana, Diego Carvalho; Lizcano, Diego J.; Varela, Diego M.; Jacinavicius, Fernando de Castro; Andrade, Gabrielle Ribeiro de; Almeida, Maria Cristina Ferreira do Rosário; Onofrio, Valeria Castilho.
Ecology, v. 101, n. 11, e03128, nov. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3174

ABSTRACT

Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non‐detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non‐governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peerreviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non‐detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio‐temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other largescale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data.

4.
Ci. Rural ; 47(8): 1-7, 2017. tab, graf
Article in English | VETINDEX | ID: vti-735393

ABSTRACT

ABSTRACT: This study aimed to verify if the growth pattern of coffee berries, considering fresh mass accumulation over time, is double sigmoid and to select the most suitable nonlinear model to describe such behavior. Data used consisted of fourteen longitudinal observations of average fresh mass of coffee berries obtained in an experiment with the cultivar Obatã IAC 1669-20. The fits provided by the Logistic and Gompertz models were compared in their single and double versions. Parameters were estimated using the least squares method using the Gauss-Newton algorithm implemented in the nls function of the R software. It can be concluded that the growth pattern of the coffee fruit, in fresh mass accumulation, is double sigmoid. The double Gompertz and double Logistic models were adequate to describe such a growth curve, with a superiority of the double Logistic model.(AU)


RESUMO: O objetivo deste trabalho foi verificar se o padrão de crescimento do fruto do cafeeiro, considerando acúmulo de massa fresca em função do tempo, é realmente duplo sigmoidal e selecionar o modelo não linear mais indicado para descrever tal comportamento. Os dados utilizados são quatorze observações longitudinais de massa fresca média de frutos do cafeeiro obtidos em um experimento com a cultivar Obatã IAC 1669-20. Foram comparados os ajustes fornecidos pelos modelos Logístico e Gompertz em suas versões simples e duplo. A estimação dos parâmetros foi feita pelo método dos mínimos quadrados utilizando o algoritmo de Gauss-Newton implementado na função nls do software R. Pode-se concluir que o padrão de crescimento do fruto do cafeeiro, em acúmulo de massa fresca, é duplo sigmoidal. Os modelos duplo Gompertz e duplo Logístico se mostraram adequados para descrever tal curva de crescimento, com uma superioridade do modelo duplo Logístico.(AU)


Subject(s)
Coffea/growth & development , Nonlinear Dynamics , Logistic Models , Normal Distribution , 24444
5.
Ciênc. rural (Online) ; 47(8): 1-7, 2017. tab, graf
Article in English | VETINDEX | ID: biblio-1480047

ABSTRACT

ABSTRACT: This study aimed to verify if the growth pattern of coffee berries, considering fresh mass accumulation over time, is double sigmoid and to select the most suitable nonlinear model to describe such behavior. Data used consisted of fourteen longitudinal observations of average fresh mass of coffee berries obtained in an experiment with the cultivar Obatã IAC 1669-20. The fits provided by the Logistic and Gompertz models were compared in their single and double versions. Parameters were estimated using the least squares method using the Gauss-Newton algorithm implemented in the nls function of the R software. It can be concluded that the growth pattern of the coffee fruit, in fresh mass accumulation, is double sigmoid. The double Gompertz and double Logistic models were adequate to describe such a growth curve, with a superiority of the double Logistic model.


RESUMO: O objetivo deste trabalho foi verificar se o padrão de crescimento do fruto do cafeeiro, considerando acúmulo de massa fresca em função do tempo, é realmente duplo sigmoidal e selecionar o modelo não linear mais indicado para descrever tal comportamento. Os dados utilizados são quatorze observações longitudinais de massa fresca média de frutos do cafeeiro obtidos em um experimento com a cultivar Obatã IAC 1669-20. Foram comparados os ajustes fornecidos pelos modelos Logístico e Gompertz em suas versões simples e duplo. A estimação dos parâmetros foi feita pelo método dos mínimos quadrados utilizando o algoritmo de Gauss-Newton implementado na função nls do software R. Pode-se concluir que o padrão de crescimento do fruto do cafeeiro, em acúmulo de massa fresca, é duplo sigmoidal. Os modelos duplo Gompertz e duplo Logístico se mostraram adequados para descrever tal curva de crescimento, com uma superioridade do modelo duplo Logístico.


Subject(s)
Coffea/growth & development , Nonlinear Dynamics , Normal Distribution , Logistic Models , 24444
SELECTION OF CITATIONS
SEARCH DETAIL