Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Funct Plant Biol ; 512024 May.
Article in English | MEDLINE | ID: mdl-38815128

ABSTRACT

Rice (Oryza sativa ) faces challenges to yield and quality due to urbanisation, deforestation and climate change, which has exacerbated high night temperature (HNT). This review explores the impacts of HNT on the physiological, molecular and agronomic aspects of rice growth. Rise in minimum temperature threatens a potential 41% reduction in rice yield by 2100. HNT disrupts rice growth stages, causing reduced seed germination, biomass, spikelet sterility and poor grain development. Recent findings indicate a 4.4% yield decline for every 1°C increase beyond 27°C, with japonica ecotypes exhibiting higher sensitivity than indica. We examine the relationships between elevated CO2 , nitrogen regimes and HNT, showing that the complexity of balancing positive CO2 effects on biomass with HNT challenges. Nitrogen enrichment proves crucial during the vegetative stage but causes disruption to reproductive stages, affecting grain yield and starch synthesis. Additionally, we elucidate the impact of HNT on plant respiration, emphasising mitochondrial respiration, photorespiration and antioxidant responses. Genomic techniques, including CRISPR-Cas9, offer potential for manipulating genes for HNT tolerance. Plant hormones and carbohydrate enzymatic activities are explored, revealing their intricate roles in spikelet fertility, grain size and starch metabolism under HNT. Gaps in understanding genetic factors influencing heat tolerance and potential trade-offs associated with hormone applications remain. The importance of interdisciplinary collaboration is needed to provide a holistic approach. Research priorities include the study of regulatory mechanisms, post-anthesis effects, cumulative HNT exposure and the interaction between climate variability and HNT impact to provide a research direction to enhance rice resilience in a changing climate.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Phenomics , Hot Temperature/adverse effects , Stress, Physiological , Climate Change
2.
Front Plant Sci ; 14: 1106672, 2023.
Article in English | MEDLINE | ID: mdl-37810402

ABSTRACT

Introduction: Light response curves are widely used to quantify phenotypic expression of photosynthesis by measuring a single sample and sequentially altering light intensity within a chamber (sequential method) or by measuring different samples that are each acclimated to a different light level (non-sequential method). Both methods are often conducted in controlled environments to achieve steady-state results, and neither method involves equilibrating the entire plant to the specific light level. Methods: Here, we compare sequential and non-sequential methods in controlled (greenhouse), semi-controlled (plant grown in growth chamber and acclimated to field conditions 2-3 days before measurements), and field environments. We selected seven diverse rice genotypes (five genotypes from the USDA rice minicore collection: 310588, 310723, 311644, 311677, 311795; and 2 additional genotypes: Nagina 22 and Zhe 733) to understand (1) the limitations of different methods, and (2) phenotypic plasticity of photosynthesis in rice grown under different environments. Results: Our results show that the non-sequential method was time-efficient and captured more variability of field conditions than the sequential method, but the model parameters were generally similar between two methods except the maximum photosynthesis rate (Amax). Amax was significantly lower across all genotypes under greenhouse conditions compared to the growth chamber and field conditions consistent with prior work, but surprisingly the apparent quantum yield (α) and the mitochondrial respiration (Rd) were generally not different among growing environments or measurement methods. Discussion: Our results suggest that field conditions are best suited to quantify phenotypic differences across different genotypes and nonsequential method was better at capturing the variability in photosynthesis.

3.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894848

ABSTRACT

Rice is the most important staple crop for the sustenance of the world's population, and drought is a major factor limiting rice production. Quantitative trait locus (QTL) analysis of drought-resistance-related traits was conducted on a recombinant inbred line (RIL) population derived from the self-fed progeny of a cross between the drought-resistant tropical japonica U.S. adapted cultivar Kaybonnet and the drought-sensitive indica cultivar ZHE733. K/Z RIL population of 198 lines was screened in the field at Fayetteville (AR) for three consecutive years under controlled drought stress (DS) and well-watered (WW) treatment during the reproductive stage. The effects of DS were quantified by measuring morphological traits, grain yield components, and root architectural traits. A QTL analysis using a set of 4133 single nucleotide polymorphism (SNP) markers and the QTL IciMapping identified 41 QTLs and 184 candidate genes for drought-related traits within the DR-QTL regions. RT-qPCR in parental lines was used to confirm the putative candidate genes. The comparison between the drought-resistant parent (Kaybonnet) and the drought-sensitive parent (ZHE733) under DS conditions revealed that the gene expression of 15 candidate DR genes with known annotations and two candidate DR genes with unknown annotations within the DR-QTL regions was up-regulated in the drought-resistant parent (Kaybonnet). The outcomes of this research provide essential information that can be utilized in developing drought-resistant rice cultivars that have higher productivity when DS conditions are prevalent.


Subject(s)
Oryza , Quantitative Trait Loci , Chromosome Mapping , Oryza/genetics , Drought Resistance , Phenotype
4.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511395

ABSTRACT

High temperature impairs starch biosynthesis in developing rice grains and thereby increases chalkiness, affecting the grain quality. Genome encoded microRNAs (miRNAs) fine-tune target transcript abundances in a spatio-temporal specific manner, and this mode of gene regulation is critical for a myriad of developmental processes as well as stress responses. However, the role of miRNAs in maintaining rice grain quality/chalkiness during high daytime temperature (HDT) stress is relatively unknown. To uncover the role of miRNAs in this process, we used five contrasting rice genotypes (low chalky lines Cyp, Ben, and KB and high chalky lines LaGrue and NB) and compared the miRNA profiles in the R6 stage caryopsis samples from plants subjected to prolonged HDT (from the onset of fertilization through R6 stage of caryopsis development). Our small RNA analysis has identified approximately 744 miRNAs that can be grouped into 291 families. Of these, 186 miRNAs belonging to 103 families are differentially regulated under HDT. Only two miRNAs, Osa-miR444f and Osa-miR1866-5p, were upregulated in all genotypes, implying that the regulations greatly varied between the genotypes. Furthermore, not even a single miRNA was commonly up/down regulated specifically in the three tolerant genotypes. However, three miRNAs (Osa-miR1866-3p, Osa-miR5150-3p and canH-miR9774a,b-3p) were commonly upregulated and onemiRNA (Osa-miR393b-5p) was commonly downregulated specifically in the sensitive genotypes (LaGrue and NB). These observations suggest that few similarities exist within the low chalky or high chalky genotypes, possibly due to high genetic variation. Among the five genotypes used, Cypress and LaGrue are genetically closely related, but exhibit contrasting chalkiness under HDT, and thus, a comparison between them is most relevant. This comparison revealed a general tendency for Cypress to display miRNA regulations that could decrease chalkiness under HDT compared with LaGrue. This study suggests that miRNAs could play an important role in maintaining grain quality in HDT-stressed rice.


Subject(s)
MicroRNAs , Oryza , Humans , Temperature , Oryza/genetics , Hot Temperature , Edible Grain/genetics , MicroRNAs/genetics
5.
Sci Rep ; 13(1): 4880, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966148

ABSTRACT

Elevated nighttime temperatures resulting from climate change significantly impact the rice crop worldwide. The rice (Oryza sativa L.) plant is highly sensitive to high nighttime temperature (HNT) during grain-filling (reproductive stage). HNT stress negatively affects grain quality traits and has a major impact on the value of the harvested rice crop. In addition, along with grain dimensions determining rice grain market classes, the grain appearance and quality traits determine the rice grain market value. During the last few years, there has been a major concern for rice growers and the rice industry over the prevalence of rice grains opacity and the reduction of grain dimensions affected by HNT stress. Hence, the improvement of heat-stress tolerance to maintain grain quality of the rice crop under HNT stress will bolster future rice value in the market. In this study, 185 F12-recombinant inbred lines (RILs) derived from two US rice cultivars, Cypress (HNT-tolerant) and LaGrue (HNT-sensitive) were screened for the grain quality traits grain length (GL), grain width (GW), and percent chalkiness (%chalk) under control and HNT stress conditions and evaluated to identify the genomic regions associated with the grain quality traits. In total, there were 15 QTLs identified; 6 QTLs represented under control condition explaining 3.33% to 8.27% of the phenotypic variation, with additive effects ranging from - 0.99 to 0.0267 on six chromosomes and 9 QTLs represented under HNT stress elucidating 6.39 to 51.53% of the phenotypic variation, with additive effects ranging from - 8.8 to 0.028 on nine chromosomes for GL, GW, and % chalk. These 15 QTLs were further characterized and scanned for natural genetic variation in a japonica diversity panel (JDP) to identify candidate genes for GL, GW, and %chalk. We found 6160 high impact single nucleotide polymorphisms (SNPs) characterized as such depending on their type, region, functional class, position, and proximity to the gene and/or gene features, and 149 differentially expressed genes (DEGs) in the 51 Mbp genomic region comprising of the 15 QTLs. Out of which, 11 potential candidate genes showed high impact SNP associations. Therefore, the analysis of the mapped QTLs and their genetic dissection in the US grown Japonica rice genotypes at genomic and transcriptomic levels provide deep insights into genetic variation beneficial to rice breeders and geneticists for understanding the mechanisms related to grain quality under heat stress in rice.


Subject(s)
Oryza , Oryza/genetics , Temperature , Chromosome Mapping/methods , Quantitative Trait Loci/genetics , Phenotype , Edible Grain/genetics
6.
iScience ; 25(12): 105627, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36465114

ABSTRACT

Evolution has long been considered to be a conservative process in which new genes arise from pre-existing genes through gene duplication, domain shuffling, horizontal transfer, overprinting, retrotransposition, etc. However, this view is changing as new genes originating from non-genic sequences are discovered in different organisms. Still, rather limited functional information is available. Here, we have identified TWISTED1 (TWT1), a possible de novo-originated protein-coding gene that modifies microtubule arrangement and causes helicoidal growth in Arabidopsis thaliana when its expression is increased. Interestingly, even though TWT1 is a likely recent gene, the lack of TWT1 function affects A. thaliana development. TWT1 seems to have originated from a non-genic sequence. If so, it would be one of the few examples to date of how during evolution de novo genes are integrated into developmental cellular and organismal processes.

7.
Genes (Basel) ; 12(11)2021 10 24.
Article in English | MEDLINE | ID: mdl-34828295

ABSTRACT

Rice (Oryza sativa L.) is the primary food for half of the global population. Recently, there has been increasing concern in the rice industry regarding the eating and milling quality of rice. This study was conducted to identify genetic information for grain characteristics using a recombinant inbred line (RIL) population from a japonica/indica cross based on high-throughput SNP markers and to provide a strategy for improving rice quality. The RIL population used was derived from a cross of "Kaybonnet (KBNT lpa)" and "ZHE733" named the K/Z RIL population, consisting of 198 lines. A total of 4133 SNP markers were used to identify quantitative trait loci (QTLs) with higher resolution and to identify more accurate candidate genes. The characteristics measured included grain length (GL), grain width (GW), grain length to width ratio (RGLW), hundred grain weight (HGW), and percent chalkiness (PC). QTL analysis was performed using QTL IciMapping software. Continuous distributions and transgressive segregations of all the traits were observed, suggesting that the traits were quantitatively inherited. A total of twenty-eight QTLs and ninety-two candidate genes related to rice grain characteristics were identified. This genetic information is important to develop rice varieties of high quality.


Subject(s)
Crosses, Genetic , Oryza/anatomy & histology , Oryza/genetics , Chromosome Mapping , Chromosomes, Plant , DNA, Plant/genetics , Edible Grain/anatomy & histology , Edible Grain/genetics , Genetic Association Studies , Genetic Markers , High-Throughput Nucleotide Sequencing , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sequence Analysis, DNA
8.
Front Plant Sci ; 12: 712167, 2021.
Article in English | MEDLINE | ID: mdl-34650575

ABSTRACT

To dissect the genetic complexity of rice grain yield (GY) and quality in response to heat stress at the reproductive stage, a diverse panel of 190 rice accessions in the United States Department of Agriculture (USDA) rice mini-core collection (URMC) diversity panel were treated with high nighttime temperature (HNT) stress at the reproductive stage of panicle initiation. The quantifiable yield component response traits were then measured. The traits, panicle length (PL), and number of spikelets per panicle (NSP) were evaluated in subsets of the panel comprising the rice subspecies Oryza sativa ssp. Indica and ssp. Japonica. Under HNT stress, the Japonica ssp. exhibited lower reductions in PL and NSP and a higher level of genetic variation compared with the other subpopulations. Whole genome sequencing identified 6.5 million single nucleotide polymorphisms (SNPs) that were used for the genome-wide association studies (GWASs) of the PL and NSP traits. The GWAS analysis in the Combined, Indica, and Japonica populations under HNT stress identified 83, 60, and 803 highly significant SNPs associated with PL, compared to the 30, 30, and 11 highly significant SNPs associated with NSP. Among these trait-associated SNPs, 140 were coincident with genomic regions previously reported for major GY component quantitative trait loci (QTLs) under heat stress. Using extents of linkage disequilibrium in the rice populations, Venn diagram analysis showed that the highest number of putative candidate genes were identified in the Japonica population, with 20 putative candidate genes being common in the Combined, Indica and Japonica populations. Network analysis of the genes linked to significant SNPs associated with PL and NSP identified modules that were involved in primary and secondary metabolisms. The findings in this study could be useful to understand the pathways/mechanisms involved in rice GY and its components under HNT stress for the acceleration of rice-breeding programs and further functional analysis by molecular geneticists.

9.
Front Genet ; 12: 652189, 2021.
Article in English | MEDLINE | ID: mdl-34249082

ABSTRACT

Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice (Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.

10.
Front Plant Sci ; 11: 232, 2020.
Article in English | MEDLINE | ID: mdl-32194606

ABSTRACT

AtNHR2A (Arabidopsis thaliana nonhost resistance 2A) and AtNHR2B (Arabidopsis thaliana nonhost resistance 2B) are two proteins that participate in nonhost resistance, a broad-spectrum mechanism of plant immunity that protects plants against the majority of potential pathogens. AtNHR2A and AtNHR2B are localized to the cytoplasm, chloroplasts, and other subcellular compartments of unknown identity. The multiple localizations of AtNHR2A and AtNHR2B suggest that these two proteins are highly dynamic and versatile, likely participating in multiple biological processes. In spite of their importance, the specific functions of AtNHR2A and AtNHR2B have not been elucidated. Thus, to aid in the functional characterization of these two proteins and identify the biological processes in which these proteins operate, we used immunoprecipitation coupled with mass spectrometry (IP-MS) to identify proteins interacting with AtNHR2A and AtNHR2B and to generate their interactome network. Further validation of three of the identified proteins provided new insights into specific pathways and processes related to plant immunity where AtNHR2A and AtNHR2B participate. Moreover, the comprehensive analysis of the AtNHR2A- and AtNHR2B-interacting proteins using published empirical information revealed that the functions of AtNHR2A and AtNHR2B are not limited to plant immunity but encompass other biological processes.

11.
Genes (Basel) ; 11(1)2020 01 05.
Article in English | MEDLINE | ID: mdl-31948113

ABSTRACT

Improving drought resistance in crops is imperative under the prevailing erratic rainfall patterns. Drought affects the growth and yield of most modern rice varieties. Recent breeding efforts aim to incorporate drought resistance traits in rice varieties that can be suitable under alternative irrigation schemes, such as in a (semi)aerobic system, as row (furrow-irrigated) rice. The identification of quantitative trait loci (QTLs) controlling grain yield, the most important trait with high selection efficiency, can lead to the identification of markers to facilitate marker-assisted breeding of drought-resistant rice. Here, we report grain yield QTLs under greenhouse drought using an F2:3 population derived from Cocodrie (drought sensitive) × Nagina 22 (N22) (drought tolerant). Eight QTLs were identified for yield traits under drought. Grain yield QTL under drought on chromosome 1 (phenotypic variance explained (PVE) = 11.15%) co-localized with the only QTL for panicle number (PVE = 37.7%). The drought-tolerant parent N22 contributed the favorable alleles for all QTLs except qGN3.2 and qGN5.1 for grain number per panicle. Stress-responsive transcription factors, such as ethylene response factor, WD40 domain protein, zinc finger protein, and genes involved in lipid/sugar metabolism were linked to the QTLs, suggesting their possible role in drought tolerance mechanism of N22 in the background of Cocodrie, contributing to higher yield under drought.


Subject(s)
Genetic Testing/methods , Oryza/genetics , Quantitative Trait Loci/genetics , Breeding , Chromosome Mapping/methods , Crops, Agricultural/genetics , Droughts , Edible Grain/genetics , Genetic Markers/genetics , Phenotype
12.
Plant Physiol ; 182(2): 1083-1099, 2020 02.
Article in English | MEDLINE | ID: mdl-31767693

ABSTRACT

The conversion of oleic acid (C18:1) to linoleic acid (C18:2) in the endoplasmic reticulum is critical to the accumulation of polyunsaturated fatty acids in seeds and other tissues, and this reaction is catalyzed by a Δ12-desaturase, FATTY ACID DESATURASE2 (FAD2). Here, we report that the tomato (Solanum lycopersicum) genome harbors two genes, SlFAD2-1 and SlFAD2-2, which encode proteins with in vitro Δ12-desaturase activity. In addition, tomato has seven divergent FAD2 members that lack Δ12-desaturase activity and differ from canonical FAD2 enzymes at multiple amino acid positions important to enzyme function. Whereas SlFAD2-1 and SlFAD2-2 are downregulated by biotic stress, the majority of divergent FAD2 genes in tomato are upregulated by one or more stresses. In particular, SlFAD2-7 is induced by the potato aphid (Macrosiphum euphorbiae) and has elevated constitutive expression levels in suppressor of prosystemin-mediated responses2 (spr2), a tomato mutant with enhanced aphid resistance and altered fatty acid profiles. Virus-induced gene silencing of SlFAD2-7 in spr2 results in significant increases in aphid population growth, indicating that a divergent FAD2 gene contributes to aphid resistance in this genotype. Thus, the FAD2 gene family in tomato is important both to primary fatty acid metabolism and to responses to biotic stress.


Subject(s)
Aphids/immunology , Disease Resistance/genetics , Fatty Acid Desaturases/metabolism , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/enzymology , Stress, Physiological/genetics , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cyclopentanes/metabolism , Disease Resistance/immunology , Fatty Acid Desaturases/genetics , Fatty Acids/metabolism , Gas Chromatography-Mass Spectrometry , Gene Ontology , Gene Silencing , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Microtubule-Associated Proteins/genetics , Oxylipins/metabolism , Phylogeny , Promoter Regions, Genetic , Sequence Homology, Amino Acid , Transcriptome
13.
PLoS One ; 14(6): e0218019, 2019.
Article in English | MEDLINE | ID: mdl-31181089

ABSTRACT

Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and consequently sustains large losses in growth and productivity. Currently, rice is the second most consumed cereal in the world and production losses caused by extreme temperature events in the context of "major climatic changes" can have major impacts on the world economy. We report here an analysis of rice genotypes in response to low-temperature stress, studied through physiological gas-exchange parameters, biochemical changes in photosynthetic pigments and antioxidants, and at the level of gene and protein expression, towards an understanding and identification of multiple low-temperature tolerance mechanisms. The first effects of cold stress were observed on photosynthesis among all genotypes. However, the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in gas exchange parameters like photosynthesis and water use efficiency in comparison to the temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245, and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica Nipponbare and M202 genotypes, as observed through the analysis of physiological and biochemical responses and the associated changes in gene and protein expression patterns. The genes and proteins showing differential expression response are notable candidates towards understanding the biological pathways affected in rice and for engineering cold tolerance, to generate cultivars capable of maintaining growth, development, and reproduction under cold stress. We also propose that the mechanisms of action of the genes analyzed are associated with the tolerance response.


Subject(s)
Cold-Shock Response/genetics , Cold-Shock Response/physiology , Oryza/genetics , Adaptation, Physiological/genetics , Cold Temperature/adverse effects , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genotype , Plant Proteins/genetics , Transcriptome/genetics
14.
Plant Dis ; 103(8): 1947-1953, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31140923

ABSTRACT

Charcoal rot of soybean, caused by Macrophomina phaseolina, is a disease of economic significance in the United States. Although there are soybean cultivars with moderate resistance, identifying and quantifying resistance is challenging. Existing assays are time consuming, and results are often highly variable. The objectives of this research were to (i) create a reproducible seed plate assay (SPA) for charcoal rot resistance and (ii) correlate field-based disease assessments with SPA results on diverse soybean accessions. To develop the SPA, surface-disinfected seeds from eight soybean genotypes (representing three susceptible and five resistant cultivars) were placed on water agar plates inoculated with M. phaseolina. After incubation at room temperature in darkness for 7 days, percent germination was determined for each cultivar relative to the germination on noninoculated plates. Results from SPA were in general agreement with published responses. None of the soybean genotypes showed complete resistance to M. phaseolina. For the second objective, charcoal rot resistance in 18 soybean accessions was assayed with SPA, and results were analyzed for correlation with field disease assessments from Stuttgart, AR, from 2011 to 2014 and from Rohwer, AR, in 2011 and 2012. SPA consistently categorized soybean genotype resistance compared with field disease assessment averages, and results were consistent with previously published resistance determinations. SPA was significantly correlated with percent height of internal stem discoloration (PHSD) at Stuttgart from 2011 to 2013 and in 2012 at Rohwer, with root and stem severity (RSS) at Rohwer in 2012, and with tap root colonization (CFU) at Stuttgart in 2012. SPA was significantly correlated to yield at Stuttgart in 2011, 2013, and 2014, and in 2011 and 2012 at Rohwer. Yield was not correlated to RSS, PHSD, or CFU at either location or in any year. Therefore, SPA is a reproducible and rapid assay for charcoal rot resistance in soybean and is significantly associated to field performance.


Subject(s)
Ascomycota , Glycine max , Ascomycota/physiology , Disease Resistance/genetics , Genotype , Plant Diseases/microbiology , Seeds/microbiology , Glycine max/genetics , Glycine max/microbiology
15.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-30800290

ABSTRACT

Predicting gene functions from genome sequence alone has been difficult, and the functions of a large fraction of plant genes remain unknown. However, leveraging the vast amount of currently available gene expression data has the potential to facilitate our understanding of plant gene functions, especially in determining complex traits. Gene coexpression networks-created by integrating multiple expression datasets-connect genes with similar patterns of expression across multiple conditions. Dense gene communities in such networks, commonly referred to as modules, often indicate that the member genes are functionally related. As such, these modules serve as tools for generating new testable hypotheses, including the prediction of gene function and importance. Recently, we have seen a paradigm shift from the traditional "global" to more defined, context-specific coexpression networks. Such coexpression networks imply genetic correlations in specific biological contexts such as during development or in response to a stress. In this short review, we highlight a few recent studies that attempt to fill the large gaps in our knowledge about cellular functions of plant genes using context-specific coexpression networks.


Subject(s)
Gene Regulatory Networks , Genes, Plant , Phenotype , Plants
16.
Plant Signal Behav ; 14(4): e1581557, 2019.
Article in English | MEDLINE | ID: mdl-30806155

ABSTRACT

Rice growth and productivity is adversely affected by low-temperature stress. From a previous screen of diverse rice genotypes for cold tolerance parameters at the vegetative stage, we selected the tolerant Nipponbare and M202 genotypes and sensitive Cypress and Secano do Brazil genotypes for further analysis at the reproductive stage for physiological and yield parameters. Cold stress severely affected grain yield as estimated by the number of grain per panicle, panicle length, and 100 seed weight. Analysis of gene expression of 21 genes involved in physiological responses to low temperature tested, in the flag leaf and inflorescence tissue of these genotypes, showed an increased expression of the Lipid Transfer Protein genes LTP7 and LTP10 in flag leaf tissue of the tolerant Nipponbare and M202, along with a significant increase in the relative expression of stress-responsive transcription factors (TFs) and cold-inducible genes. In flag leaf tissue OsNAC9, OsNAC10 and OsNAP genes showed high correlation with photosynthesis, stomatal conductance, transpiration and Quantum Efficiency of PSII. In consequence of the foregoing results, we conclude that Nipponbare and M202 are cold tolerant genotypes and that LTP7, LTP10, OsNAC9, OsNAC10 and OsNAP genes can be used as markers in screening for cold tolerance at the reproductive stage. Furthermore based on the results we propose a model of low-temperature tolerance mechanism of how stress is perceived, and how the signal cascade acts to promote tolerance at below-ideal temperatures.


Subject(s)
Carrier Proteins/metabolism , Cold Temperature , Oryza , Gene Expression Regulation, Plant , Genotype , Oryza/genetics , Oryza/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Seedlings/metabolism , Seeds/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism
17.
Genomics ; 111(4): 629-635, 2019 07.
Article in English | MEDLINE | ID: mdl-29626511

ABSTRACT

Salt stress causes foliar chlorosis and scorch, plant stunting, and eventually yield reduction in soybean. There are differential responses, namely tolerance (excluder) and intolerance (includer), among soybean germplasm. However, the genetic and physiological mechanisms for salt tolerance is complex and not clear yet. Based on the results from the screening of the RA-452 x Osage mapping population, two F4:6 lines with extreme responses, most tolerant and most sensitive, were selected for a time-course gene expression study in which the 250 mM NaCl treatment was initially imposed at the V1 stage and continued for 24 h (hrs). Total RNA was isolated from the leaves harvested at 0, 6, 12, 24 h after the initiation of salt treatment, respectively. The RNA-Seq analysis was conducted to compare the salt tolerant genotype with salt sensitive genotype at each time point using RNA-Seq pipeline method. A total of 2374, 998, 1746, and 630 differentially expressed genes (DEGs) between salt-tolerant line and salt-sensitive line, were found at 0, 6, 12, and 24 h, respectively. The expression patterns of 154 common DEGs among all the time points were investigated, of which, six common DEGs were upregulated and seven common DEGs were downregulated in salt-tolerant line. Moreover, 13 common DEGs were dramatically expressed at all the time points. Based on Log2 (fold change) of expression level of salt-tolerant line to salt-sensitive line and gene annotation, Glyma.02G228100, Glyma.03G226000, Glyma.03G031000, Glyma.03G031400, Glyma.04G180300, Glyma.04G180400, Glyma.05 g204600, Glyma.08G189600, Glyma.13G042200, and Glyma.17G173200, were considered to be the key potential genes involving in the salt-tolerance mechanism in the soybean salt-tolerant line.


Subject(s)
Glycine max/genetics , Salt Tolerance , Transcriptome , Gene Expression Regulation, Plant , Genotype , Glycine max/physiology
18.
Plant Physiol ; 177(3): 1198-1217, 2018 07.
Article in English | MEDLINE | ID: mdl-29844229

ABSTRACT

Long noncoding RNAs (lncRNAs) have been characterized extensively in animals and are involved in several processes, including homeobox gene expression and X-chromosome inactivation. In comparison, there has been much less detailed characterization of plant lncRNAs, and the number of distinct lncRNAs encoded in plant genomes and their regulation by developmental and epigenetic mechanisms remain largely unknown. Here, we analyzed transcriptome data from Asian rice (Oryza sativa) and identified 6,309 long intergenic noncoding RNAs (lincRNAs), focusing on their expression in reproductive tissues and organs. Most O. sativa lincRNAs were expressed in a highly tissue-specific manner, with an unexpectedly high fraction specifically expressed in male gametes. Mutation of a component of the Polycomb Repressive Complex2 (PRC2) resulted in derepression of another large class of lincRNAs, whose expression is correlated with H3K27 trimethylation in developing panicles. Overlap with the sperm cell-specific lincRNAs suggests that epigenetic repression of lincRNAs in the panicles was partially relieved in the male germline. Expression of a subset of lincRNAs also showed modulation by drought in reproductive tissues. Comparison with other cereal genomes showed that the lincRNAs generally have low levels of conservation at both the sequence and structural levels. Use of a novelty detection support vector machine model enabled the detection of nucleotide sequence and structural homology in ∼10% and ∼4% of the lincRNAs in genomes of purple false brome (Brachypodium distachyon) and maize (Zea mays), respectively. This is the first study to report on a large number of lncRNAs that are targets of repression by PRC2 rather than mediating regulation via PRC2. That the vast majority of the lincRNAs reported here do not overlap with those of other rice studies indicates that these are a significant addition to the known lincRNAs in rice.


Subject(s)
Oryza/genetics , Pollen/genetics , Polycomb Repressive Complex 2/genetics , RNA, Long Noncoding/genetics , Base Sequence , Brachypodium/genetics , Chromatin/genetics , Conserved Sequence , Droughts , Epigenetic Repression , Gene Expression Regulation, Plant , Methylation , Polycomb Repressive Complex 2/metabolism , RNA, Plant , Sequence Alignment/methods , Support Vector Machine
19.
Exp Biol Med (Maywood) ; 243(3): 262-271, 2018 02.
Article in English | MEDLINE | ID: mdl-29405770

ABSTRACT

Liquid biopsy methodologies, for the purpose of plasma genotyping of cell-free DNA (cfDNA) of solid tumors, are a new class of novel molecular assays. Such assays are rapidly entering the clinical sphere of research-based monitoring in translational oncology, especially for thoracic malignancies. Potential applications for these blood-based cfDNA assays include: (i) initial diagnosis, (ii) response to therapy and follow-up, (iii) tumor evolution, and (iv) minimal residual disease evaluation. Precision medicine will benefit from cutting-edge molecular diagnostics, especially regarding treatment decisions in the adjuvant setting, where avoiding over-treatment and unnecessary toxicity are paramount. The use of innovative genetic analysis techniques on individual patient tumor samples is being pursued in several advanced clinical trials. Rather than using a categorical treatment plan, the next critical step of therapeutic decision making is providing the "right" cancer therapy for an individual patient, including correct dose and timeframe based on the molecular analysis of the tumor in question. Per the 21st Century Cures Act, innovative clinical trials are integral for biomarker and drug development. This will include advanced clinical trials utilizing: (i) innovative assays, (ii) molecular profiling with cutting-edge bioinformatics, and (iii) clinically relevant animal or tissue models. In this paper, a mini-review addresses state-of-the-art liquid biopsy approaches. Additionally, an on-going advanced clinical trial for lung cancer with novelty through synergizing liquid biopsies, co-clinical trials, and advanced bioinformatics is also presented. Impact statement Liquid biopsy technology is providing a new source for cancer biomarkers, and adds new dimensions in advanced clinical trials. Utilizing a non-invasive routine blood draw, the liquid biopsy provides abilities to address perplexing issues of tumor tissue heterogeneity by identifying mutations in both primary and metastatic lesions. Regarding the assessment of response to cancer therapy, the liquid biopsy is not ready to replace medical imaging, but adds critical new information; for instance, through a temporal assessment of quantitative circulating tumor DNA (ctDNA) assay results, and importantly, the ability to monitor for signs of resistance, via emerging clones. Adjuvant therapy may soon be considered based on a quantitative cfDNA assay. As sensitivity and specificity of the technology continue to progress, cancer screening and prevention will improve and save countless lives by finding the cancer early, so that a routine surgery may be all that is required for a definitive cure.


Subject(s)
Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , DNA, Neoplasm/blood , Liquid Biopsy/methods , Lung Neoplasms/diagnosis , Neoplasm, Residual/diagnosis , Precision Medicine/methods , Biomarkers, Tumor/blood , Clinical Decision-Making , Genotype , Humans , Lung Neoplasms/blood , Lung Neoplasms/genetics , Neoplasm, Residual/blood , Neoplasm, Residual/genetics
20.
PLoS One ; 12(11): e0187625, 2017.
Article in English | MEDLINE | ID: mdl-29107972

ABSTRACT

Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic acid is an important node for cross-talk between plant transcriptional response pathways to high temperature stress and pathogen attack. Genes in this pathway represent an important focus for future study to determine how plants evolved to deal with simultaneous abiotic and biotic stresses.


Subject(s)
Genes, Plant , Hot Temperature , Oryza/genetics , Sequence Analysis, RNA/methods , Adaptation, Physiological , Oryza/microbiology , Oryza/physiology , Plant Growth Regulators/biosynthesis , Transcriptome , Xanthomonas/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...