Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Rehabil Sci ; 4: 1283635, 2023.
Article in English | MEDLINE | ID: mdl-37928751

ABSTRACT

Introduction: Anterior cruciate ligament (ACL) injuries cause knee instability, knee pain, weight-bearing adjustments, and functional deficits but their association to patellar tendon quality is unknown. Our purpose was to investigate quadriceps strength, patellar tendon quality, relative load exposure, perceived knee stability, knee pain, extension angle, and time from ACL injury; in addition to examining their relative associations. Methods: Injured and uninjured legs of 81 male athletes of different sports with a unilateral ACL injury (18-45 years) were examined. Participants reported location and intensity of knee pain and their perceived stability using a numerical rating scale (NRS 0-10). Strength was tested with an isokinetic device. Tendon quality was measured using ultrasound tissue characterization. Means ± standard deviation (SD) of perceived knee stability, knee extension angle, knee pain, isokinetic quadriceps strength in relation to body mass, proportion of echo-types (I-IV), tendon volume, and number of days from ACL injury to assessment are reported. Values of effect sizes (ES) and correlations (rs) were calculated. Results: ACL injured leg demonstrated reduced reported knee stability (6.3 ± 2.5), decreased knee extension angle (-0.7 ± 3.1° vs. -2.7 ± 2.2°; ES = 0.7; P < 0.001), greater knee pain (NRS 3.1 ± 2.2 vs. 0.0 ± 0.1; ES = 2.0; P < 0.001), and 22% lower quadriceps strength (228.0 ± 65.0 vs. 291.2 ± 52.9 Nm/kg: ES = 1.2; P < 0.001) as compared to the uninjured leg. However, patellar tendons in both legs displayed similar quality. Quadriceps strength was associated with stability (rs = -0.54; P < 0.001), pain (rs = -0.47; P < 0.001), extension angle (rs = -0.39; P < 0.001), and relative load exposure (rs = -0.34; P < 0.004). Echo-types distribution was beneficially associated with time from ACL injury (rs range: -0.20/ -0.32; P < 0.05). Discussion: ACL injured athletes displayed knee pain, extension deficit, and weaker quadriceps in the injured leg. While there were no differences in patellar tendon quality between legs, longer time from ACL injury showed better tendon quality.

2.
Article in English | MEDLINE | ID: mdl-31360525

ABSTRACT

BACKGROUND: Ultrasound tissue characterization (UTC) imaging has been previously used to describe the characteristics of patellar and Achilles tendons. UTC imaging compares and correlates successive ultrasonographic transverse tendon images to calculate the distribution of four color-coded echo-types that represent different tendon tissue types. However, UTC has not been used to describe the characteristics of patellar tendons after anterior cruciate ligament reconstruction (ACLR). The aim of this cross-sectional study was to assess the intra and inter-rater reliability of the UTC in unharvested and harvested patellar tendons of patients undergoing ACLR. METHODS: Intra and inter-rater reliability of both UTC data collection and analysis were assessed. Ten harvested and twenty unharvested patellar tendons from eighteen participants were scanned twice by the same examiner. Eleven harvested and ten unharvested patellar tendons from sixteen participants were scanned and analyzed twice by two different examiners. Twenty harvested and nineteen unharvested patellar tendons from twenty-three participants were analyzed twice by two examiners. RESULTS: Quantification of the proportion of echo-types I, II, III and IV in the areas of interest: (1) patella apex, (2) proximal tendon, (3) mid tendon, (4) distal tendon, and overall tendon of harvested and unharvested patellar tendons all displayed excellent intra-rater reliability (ICC2,1: 0.94 to 0.99), excellent inter-rater reliability for harvested and unharvested patellar tendon scanning and analysis (ICC2,1: 0.89 to 0.98), and excellent inter-rater reliability for analysis (ICC2,1: 0.95 to 0.99). Intra-rater reliability for the measure of volume was good (ICC2,1: 0.69 harvested, 0.67 unharvested), whilst mixed results were observed for the measure of mid tendon thickness (ICC2,1: 0.88 harvested, 0.57 unharvested). Inter-rater reliability for scanning and analysis was good for volume (ICC2,1: 0.67) and excellent for thickness (ICC2,1: 0.97), while the inter-rater reliability for analysis was fair to poor for volume (ICC2,1: 0.59 harvested, 0.30 unharvested), and excellent to poor for mid tendon thickness (ICC2,1: 0.85 harvested, 0.24 unharvested). CONCLUSION: UTC imaging is a reliable tool to characterize the quality of most aspects of unharvested and harvested patellar tendons in subjects undergoing ACLR.

SELECTION OF CITATIONS
SEARCH DETAIL
...