Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Biochem Pharmacol ; 216: 115766, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634596

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas' disease, an endemic and neglected disease. The treatment is limited to only two drugs, benznidazole (BZL) and nifurtimox (NFX), introduced more than fifty years ago and no new advances have been made since then. Nucleoside diphosphate kinases (NDPK) are key metabolic enzymes which have gained interest as drug targets of pathogen organisms. Taking advantage of the computer-assisted drug repurposing approaches, in the present work we initiate a search of potential T. cruzi nucleoside diphosphate kinase 1 (TcNDPK1) inhibitors over an âˆ¼ 12,000 compound structures database to find drugs targeted to this enzyme with trypanocidal activity. Four medicines were selected and evaluated in vitro, ketorolac (KET, an anti-inflamatory), dutasteride (DUT, used to treat benign prostatic hyperplasia), nebivolol and telmisartan (NEB and TEL, used to treat high blood pressure). The four compounds were weak inhibitors and presented different trypanocidal effect on epimastigotes, trypomastigotes and intracellular stages. NEB and TEL were the most active drugs with increased effect on intracellular stages, (IC50 = 2.25 µM and 13.21 µM respectively), and selectivity indexes of 13.01 and 8.59 respectively, showing comparable effect to BZL, the first line drug for Chagas' disease treatment. In addition, both presented positive interactions when combined with BZL. Finally, transgenic epimastigotes with increased expression of TcNDPK1 were more resistant to TEL and NEB, suggesting that TcNDPK1 is at least one of the molecular targets. In view of the results, NEB and TEL could be repurposed medicines for Chagas' disease therapy.

2.
Acta Trop ; 242: 106920, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37028584

ABSTRACT

Benznidazole and nifurtimox are the drugs currently used for the treatment of Chagas disease, however its side effects may affect patient adherence. In the search for new alternative therapies, we previously identified isotretinoin (ISO), an FDA-approved drug widely used for the treatment of severe acne through a drug repurposing strategy. ISO shows a strong activity against Trypanosoma cruzi parasites in the nanomolar range, and its mechanism of action is through the inhibition of T. cruzi polyamine and amino acid transporters from the Amino Acid/Auxin Permeases (AAAP) family. In this work, a murine model of chronic Chagas disease (C57BL/6 J mice), intraperitoneally infected with T. cruzi Nicaragua isolate (DTU TcI), were treated with different oral administrations of ISO: daily doses of 5 mg/kg/day for 30 days and weekly doses of 10 mg/kg during 13 weeks. The efficacy of the treatments was evaluated by monitoring blood parasitemia by qPCR, anti-T. cruzi antibodies by ELISA, and cardiac abnormalities by electrocardiography. No parasites were detected in blood after any of the ISO treatments. The electrocardiographic study of the untreated chronic mice showed a significant decrease in heart rate, while in the treated mice this negative chronotropic effect was not observed. Atrioventricular nodal conduction time in untreated mice was significantly longer than in treated animals. Mice treated even with ISO 10 mg/kg dose every 7 days, showed a significant reduction in anti-T. cruzi IgG levels. In conclusion, the intermittent administration of ISO 10 mg/kg would improve myocardial compromise during the chronic stage.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Animals , Mice , Isotretinoin/pharmacology , Isotretinoin/therapeutic use , Pharmaceutical Preparations , Disease Models, Animal , Trypanocidal Agents/therapeutic use , Mice, Inbred C57BL , Chagas Disease/parasitology , Nitroimidazoles/therapeutic use
3.
Chembiochem ; 23(13): e202200147, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35476788

ABSTRACT

In nature 2-deoxy-D-ribose-5-phosphate aldolase (DERA) catalyses the reversible formation of 2-deoxyribose 5-phosphate from D-glyceraldehyde 3-phosphate and acetaldehyde. In addition, this enzyme can use acetaldehyde as the sole substrate, resulting in a tandem aldol reaction, yielding 2,4,6-trideoxy-D-erythro-hexapyranose, which spontaneously cyclizes. This reaction is very useful for the synthesis of the side chain of statin-type drugs used to decrease cholesterol levels in blood. One of the main challenges in the use of DERA in industrial processes, where high substrate loads are needed to achieve the desired productivity, is its inactivation by high acetaldehyde concentration. In this work, the utility of different variants of Pectobacterium atrosepticum DERA (PaDERA) as whole cell biocatalysts to synthesize 2-deoxyribose 5-phosphate and 2,4,6-trideoxy-D-erythro-hexapyranose was analysed. Under optimized conditions, E. coli BL21 (PaDERA C-His AA C49M) whole cells yields 99 % of both products. Furthermore, this enzyme is able to tolerate 500 mM acetaldehyde in a whole-cell experiment which makes it suitable for industrial applications.


Subject(s)
Escherichia coli , Fructose-Bisphosphate Aldolase , Acetaldehyde , Aldehyde-Lyases/chemistry , Aldehyde-Lyases/genetics , Pectobacterium , Ribosemonophosphates
4.
Mem Inst Oswaldo Cruz ; 116: e210339, 2022.
Article in English | MEDLINE | ID: mdl-35170678

ABSTRACT

BACKGROUND: An increasing amount of research has led to the positioning of nucleoside diphosphate kinases (NDPK/NDK) as key metabolic enzymes among all organisms. They contribute to the maintenance the intracellular di- and tri- phosphate nucleoside homeostasis, but they also are involved in widely diverse processes such as gene regulation, apoptosis, signal transduction and many other regulatory roles. OBJETIVE: Examine in depth the NDPKs of trypanosomatid parasites responsible for devastating human diseases (e.g., Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp.) which deserve special attention. METHODS: The earliest and latest advances in the topic were explored, focusing on trypanosomatid NDPK features, multifunctionality and suitability as molecular drug targets. FINDINGS: Trypanosomatid NDPKs appear to play functions different from their host counterparts. Evidences indicate that they would perform key roles in the parasite metabolism such as nucleotide homeostasis, drug resistance, DNA damage responses and gene regulation, as well as host-parasite interactions, infection, virulence and immune evasion, placing them as attractive pharmacological targets. MAIN CONCLUSIONS: NDPKs are very interesting multifunctional enzymes. In the present review, the potential of trypanosomatid NDPKs was highlighted, raising awareness of their value not only with respect to parasite biology but also as molecular targets.


Subject(s)
Nucleoside-Diphosphate Kinase , Trypanosoma brucei brucei , Trypanosoma cruzi , Host-Parasite Interactions , Humans , Nucleoside-Diphosphate Kinase/genetics , Nucleotides , Trypanosoma brucei brucei/genetics
5.
Nat Prod Res ; 36(12): 3153-3157, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34219561

ABSTRACT

Arginine kinase from Trypanosoma cruzi (TcAK) catalyzes the interconversion of arginine and phosphoarginine to maintain the ATP/ADP cell balance, and is involved in the parasites' energetic homeostasis and stress responses. Using virtual screening approaches, some plant-derived polyphenolic pigments, such as anthocyanidins, were predicted to inhibit TcAK activity. Here, it was demonstrated that the anthocyanidin delphinidin showed a non-competitive inhibition mechanism of TcAK (Ki arginine = 1.32 µM and Ki ATP = 500 µM). Molecular docking simulations predicted that delphinidin occupies part of the ATP/ADP pocket, more specifically the one that binds the ribose phosphate, and molecular dynamics simulations confirmed the amino acids involved in binding. Delphinidin exerted trypanocidal activity over T. cruzi trypomastigotes with a calculated IC50 of 19.51 µM. Anthocyanidins are low-toxicity natural products which can be exploited for the development of trypanocidal drugs with less secondary effects than those currently used for the treatment of Chagas disease.


Subject(s)
Anthocyanins , Arginine Kinase , Chagas Disease , Trypanocidal Agents , Adenosine Diphosphate , Adenosine Triphosphate , Anthocyanins/pharmacology , Arginine/metabolism , Arginine Kinase/antagonists & inhibitors , Chagas Disease/drug therapy , Molecular Docking Simulation , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi
6.
Mem. Inst. Oswaldo Cruz ; 116: e210339, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1360593

ABSTRACT

BACKGROUND An increasing amount of research has led to the positioning of nucleoside diphosphate kinases (NDPK/NDK) as key metabolic enzymes among all organisms. They contribute to the maintenance the intracellular di- and tri- phosphate nucleoside homeostasis, but they also are involved in widely diverse processes such as gene regulation, apoptosis, signal transduction and many other regulatory roles. OBJETIVE Examine in depth the NDPKs of trypanosomatid parasites responsible for devastating human diseases (e.g., Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp.) which deserve special attention. METHODS The earliest and latest advances in the topic were explored, focusing on trypanosomatid NDPK features, multifunctionality and suitability as molecular drug targets. FINDINGS Trypanosomatid NDPKs appear to play functions different from their host counterparts. Evidences indicate that they would perform key roles in the parasite metabolism such as nucleotide homeostasis, drug resistance, DNA damage responses and gene regulation, as well as host-parasite interactions, infection, virulence and immune evasion, placing them as attractive pharmacological targets. MAIN CONCLUSIONS NDPKs are very interesting multifunctional enzymes. In the present review, the potential of trypanosomatid NDPKs was highlighted, raising awareness of their value not only with respect to parasite biology but also as molecular targets.

7.
FEMS Microbiol Lett ; 367(23)2020 12 22.
Article in English | MEDLINE | ID: mdl-33232444

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease. There are only two approved treatments, both of them unsuitable for the chronic phase, therefore the development of new drugs is a priority. Trypanosoma cruzi arginine kinase (TcAK) is a promising drug target since it is absent in humans and it is involved in cellular stress responses. In a previous study, possible TcAK inhibitors were identified through computer simulations resulting the best compounds capsaicin and cyanidin derivatives. Here, we evaluate the effect of capsaicin on TcAK activity and its trypanocidal effect. Although capsaicin produced a weak enzyme inhibition, it had a strong trypanocidal effect on epimastigotes and trypomastigotes (IC50 = 6.26 µM and 0.26 µM, respectively) being 20-fold more active on trypomastigotes than mammalian cells. Capsaicin was also active on the intracellular cycle reducing by half the burst of trypomastigotes at approximately 2 µM. Considering the difference between the concentrations at which parasite death and TcAK inhibition occur, other possible targets were predicted. Capsaicin is a selective trypanocidal agent active in nanomolar concentrations, with an IC50 57-fold lower than benznidazole, the drug currently used for treating Chagas disease.


Subject(s)
Arginine Kinase/metabolism , Capsaicin/pharmacology , Trypanosoma cruzi/drug effects , Chagas Disease/drug therapy , Enzyme Activation/drug effects , Inhibitory Concentration 50 , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/enzymology
8.
Bioorg Med Chem Lett ; 30(20): 127491, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32795626

ABSTRACT

A series of synthetic 1,2,4-trioxanes related to artemisinin was tested against L. donovani and T. cruzi parasites. This screening identified some active compounds, with key common structural features. Interestingly, these selected trioxanes were efficient against both parasites, and achieved antiparasitic activities comparable or superior than those presented by the corresponding reference drugs, artemisinin and artesunate. This study represents the first example of synthetic trioxanes evaluated on T. cruzi and provides possible candidates for developing new drugs for the treatment of leishmaniasis and Chagas disease.


Subject(s)
Antiparasitic Agents/pharmacology , Heterocyclic Compounds/pharmacology , Leishmania donovani/drug effects , Trypanosoma cruzi/drug effects , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Dose-Response Relationship, Drug , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
9.
Mem Inst Oswaldo Cruz ; 115: e200019, 2020.
Article in English | MEDLINE | ID: mdl-32696913

ABSTRACT

BACKGROUND: NME23/NDPKs are well conserved proteins found in all living organisms. In addition to being nucleoside diphosphate kinases (NDPK), they are multifunctional enzymes involved in different processes such as DNA stability, gene regulation and DNA repair among others. TcNDPK1 is the canonical NDPK isoform present in Trypanosoma cruzi, which has nuclease activity and DNA-binding properties in vitro. OBJECTIVES: In the present study we explored the role of TcNDPK1 in DNA damage responses. METHODS: TcNDPK1 was expressed in mutant bacteria and yeasts and over-expressed in epimastigotes. Mutation frequencies, tolerance to genotoxic agents and activity of DNA repair enzymes were evaluated. FINDINGS: Bacteria decreased about 15-folds the spontaneous mutation rate and yeasts were more resistant to hydrogen peroxide and to UV radiation than controls. Parasites overexpressing TcNDPK1 were able to withstand genotoxic stresses caused by hydrogen peroxide, phleomycin and hidroxyurea. They also presented less genomic damage and augmented levels of poly(ADP)ribose and poly(ADP)ribose polymerase, an enzyme involved in DNA repair. MAIN CONCLUSION: These results strongly suggest a novel function for TcNDPK1; its involvement in the maintenance of parasite's genome integrity.


Subject(s)
DNA Damage , Nucleoside-Diphosphate Kinase/metabolism , Trypanosoma cruzi/enzymology , DNA Repair , Nucleoside-Diphosphate Kinase/genetics , Poly(ADP-ribose) Polymerases , Trypanosoma cruzi/genetics
10.
Parasitology ; 147(6): 611-633, 2020 05.
Article in English | MEDLINE | ID: mdl-32046803

ABSTRACT

During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.


Subject(s)
Computational Biology/statistics & numerical data , Drug Discovery/statistics & numerical data , Leishmaniasis/drug therapy , Trypanocidal Agents/pharmacology , Trypanosomiasis/drug therapy , Animals , Computer Simulation , Humans , Mice
11.
PLoS Negl Trop Dis ; 14(1): e0007481, 2020 01.
Article in English | MEDLINE | ID: mdl-31961864

ABSTRACT

BACKGROUND: Crystal violet (CV) was used for several years in blood banks to eliminate the parasite Trypanosoma cruzi in endemic areas in order to prevent transfusion-transmitted Chagas disease. One mechanism of action described for CV involves inhibition of proline uptake. In T. cruzi, proline is essential for host cell infection and intracellular differentiation among other processes, and can be obtained through the proline permease TcAAAP069. METHODOLOGY/PRINCIPAL FINDINGS: CV inhibited proline transporter TcAAAP069 and parasites overexpressing this permease were 47-fold more sensitive to this compound than control parasites. Using CV as reference molecule, loratadine, cyproheptadine, olanzapine and clofazimine were identified as structurally related compounds to CV (structural analogues) by in silico drug repurposing through a similarity-based virtual screening protocol. All these already-approved drugs for clinical use inhibited TcAAAP069 activity with different efficacies and also presented trypanocidal action in epimastigotes, trypomastigotes and amastigotes of the Y, CL Brener and Dm28c T. cruzi strains. Finally, a synergistic effect between benznidazole and the CV chemical analogues was evidenced by combination and dose-reduction indexes values in epimastigotes and trypomastigotes of the Y strain. CONCLUSIONS/SIGNIFICANCE: Loratadine, cyproheptadine and clofazimine inhibit TcAAAP069 proline transporter and also present trypanocidal effect against all T. cruzi life stages in strains from three different DTUs. These CV structural analogues could be a starting point to design therapeutic alternatives to treat Chagas disease by finding new indications for old drugs. This approach, called drug repurposing is a recommended strategy by the World Health Organization to treat neglected diseases, like Chagas disease, and combination therapy may improve the possibility of success of repositioned drugs.


Subject(s)
Amino Acid Transport Systems, Neutral/antagonists & inhibitors , Gentian Violet/chemistry , Gentian Violet/pharmacology , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Chagas Disease/parasitology , Clofazimine/pharmacology , Computer Simulation , Drug Repositioning , Humans , Life Cycle Stages/drug effects , Loratadine/pharmacology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanocidal Agents/chemistry , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism
12.
J Mol Graph Model ; 95: 107506, 2020 03.
Article in English | MEDLINE | ID: mdl-31821935

ABSTRACT

Enolase is a glycolytic enzyme that catalyzes the interconversion between 2-phosphoglycerate and phosphoenolpyruvate. In trypanosomatids, enolase was proposed as a key enzyme after in silico and in vivo analysis and it was validated as a protein essential for the survival of the parasite. Therefore, enolase constitutes an interesting enzyme target for the identification of drugs against Chagas disease. In this work, a combined virtual screening strategy was implemented, employing similarity virtual screening, molecular docking, and molecular dynamics. First, two known enolase inhibitors and the enzyme substrates were used as queries for the similarity screening on the Sweetlead database using five different algorithms. Compounds retrieved in the top 10 of at least three search algorithms were selected for further analysis, resulting in six compounds of medical use (etidronate, pamidronate, fosfomycin, acetohydroxamate, triclofos, and aminohydroxybutyrate). Molecular docking simulations and pose re-scoring predicted that binding with acetohydroxamate and triclofos would be weak, while fosfomycin and aminohydroxybutyrate predicted binding is experimentally implausible. Docking poses obtained for etidronate, pamidronate, and PEP were used for molecular dynamics calculations to describe their mode of binding. From the obtained results, we propose etidronate as a potential TcENO inhibitor and describe molecular motifs to be taken into account in the repurposing or design of drugs targeting this enzyme active site.


Subject(s)
Drug Repositioning , Etidronic Acid , Trypanosoma cruzi , Molecular Docking Simulation , Phosphopyruvate Hydratase
13.
Mem. Inst. Oswaldo Cruz ; 115: e200019, 2020. tab, graf
Article in English | LILACS, Sec. Est. Saúde SP | ID: biblio-1135223

ABSTRACT

BACKGROUND NME23/NDPKs are well conserved proteins found in all living organisms. In addition to being nucleoside diphosphate kinases (NDPK), they are multifunctional enzymes involved in different processes such as DNA stability, gene regulation and DNA repair among others. TcNDPK1 is the canonical NDPK isoform present in Trypanosoma cruzi, which has nuclease activity and DNA-binding properties in vitro. OBJECTIVES In the present study we explored the role of TcNDPK1 in DNA damage responses. METHODS TcNDPK1 was expressed in mutant bacteria and yeasts and over-expressed in epimastigotes. Mutation frequencies, tolerance to genotoxic agents and activity of DNA repair enzymes were evaluated. FINDINGS Bacteria decreased about 15-folds the spontaneous mutation rate and yeasts were more resistant to hydrogen peroxide and to UV radiation than controls. Parasites overexpressing TcNDPK1 were able to withstand genotoxic stresses caused by hydrogen peroxide, phleomycin and hidroxyurea. They also presented less genomic damage and augmented levels of poly(ADP)ribose and poly(ADP)ribose polymerase, an enzyme involved in DNA repair. MAIN CONCLUSION These results strongly suggest a novel function for TcNDPK1; its involvement in the maintenance of parasite's genome integrity.


Subject(s)
Trypanosoma cruzi/enzymology , DNA Damage , Nucleoside-Diphosphate Kinase/metabolism , Trypanosoma cruzi/genetics , Poly(ADP-ribose) Polymerases , Nucleoside-Diphosphate Kinase/genetics , DNA Repair
14.
Front Med (Lausanne) ; 6: 256, 2019.
Article in English | MEDLINE | ID: mdl-31781568

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease, a parasitic infection endemic in Latin America. In T. cruzi the transport of polyamines is essential because this organism is unable to synthesize these compounds de novo. Therefore, the uptake of polyamines from the extracellular medium is critical for survival of the parasite. The anthracene-putrescine conjugate Ant4 was first designed as a polyamine transport probe in cancer cells. Ant4 was also found to inhibit the polyamine transport system and produced a strong trypanocidal effect in T. cruzi. Considering that Ant4 is not currently approved by the FDA, in this work we performed computer simulations to find trypanocidal drugs approved for use in humans that have structures and activities similar to Ant4. Through a similarity ligand-based virtual screening using Ant4 as reference molecule, four possible inhibitors of polyamine transport were found. Three of them, promazine, chlorpromazine, and clomipramine, showed to be effective inhibitors of putrescine uptake, and also revealed a high trypanocidal activity against T. cruzi amastigotes (IC50 values of 3.8, 1.9, and 2.9 µM, respectively) and trypomastigotes (IC50 values of 3.4, 2.7, and 1.3 µM, respectively) while in epimastigotes the IC50 were significantly higher (34.7, 41.4, and 39.7 µM, respectively). Finally, molecular docking simulations suggest that the interactions between the T. cruzi polyamine transporter TcPAT12 and all the identified inhibitors occur in the same region of the protein. However, this location is different from the site occupied by the natural substrates. The value of this effort is that repurposing known drugs in the treatment of other pathologies, especially neglected diseases such as Chagas disease, significantly decreases the time and economic cost of implementation.

15.
Curr Med Chem ; 26(36): 6636-6651, 2019.
Article in English | MEDLINE | ID: mdl-31218951

ABSTRACT

Amino acids and polyamines are involved in relevant processes for the parasite Trypanosoma cruzi, like protein synthesis, stress resistance, life cycle progression, infection establishment and redox balance, among others. In addition to the biosynthetic routes of amino acids, T. cruzi possesses transport systems that allow the active uptake from the extracellular medium; and in the case of polyamines, the uptake is the unique way to obtain these compounds. The TcAAAP protein family is absent in mammals and its members are responsible for amino acid and derivative uptake, thus the TcAAAP permeases are not only interesting and promising therapeutic targets but could also be used to direct the entry of toxic compounds into the parasite. Although there is a treatment available for Chagas disease, its limited efficacy in the chronic stage of the disease, as well as the side effects reported, highlight the urgent need to develop new therapies. Discovery of new drugs is a slow and cost-consuming process, and even during clinical trials the drugs can fail. In this context, drug repositioning is an interesting and recommended strategy by the World Health Organization since costs and time are significantly reduced. In this article, amino acids and polyamines transport and their potential as therapeutic targets will be revised, including examples of synthetic drugs and drug repurposing.


Subject(s)
Amino Acid Transport Systems/antagonists & inhibitors , Cation Transport Proteins/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Drug Repositioning , Polyamines/metabolism
16.
Heliyon ; 5(6): e01947, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31211266

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease, a parasitic infection endemic in Latin America. Currently there are no effective treatments for the chronic phase of the disease, when most patients are diagnosed, therefore the development of new drugs is a priority area. Several triazoles, used as fungicides, exhibit trypanocidal activity both in vitro and in vivo. The mechanism of action of such drugs, both in fungi and in T. cruzi, relies in the inhibition of ergosterol biosynthesis affecting the cell viability and growth. Among them, terconazole was the first triazole antifungal drug for human use. In this work, the trypanocidal activity of terconazole was evaluated using in vitro assays. In epimastigotes of two parasites strains from different discrete typing units (Y and Dm28c) the calculated IC50 were 25.7 µM and 21.9 µM, respectively. In trypomastigotes and amastigotes (the clinically relevant life-stages of T. cruzi) a higher drug susceptibility was observed with IC50 values of 4.6 µM and 5.9 µM, respectively. Finally, the molecular docking simulations suggest that terconazole inhibits the T. cruzi cytochrome P450 14-α-demethylase, interacting in a similar way that other triazole drugs. Drug repurposing to Chagas disease treatment is one of the recommended approach according to the criterion of international health organizations for their application in neglected diseases.

17.
Sci Rep ; 9(1): 2888, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30814563

ABSTRACT

DNA polymerase theta (Polθ), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Polθ plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Polθ modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Polθ in different genomic loci; one ortholog is homologous to the Polθ C-terminal polymerase domain, and the other is homologous to the Polθ helicase domain, called Polθ-polymerase and Polθ-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Polθ-helicase from the nuclear extract. Orc1/Cdc6 and Polθ-helicase directly interacted, and Polθ-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Polθ-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Polθ-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins.


Subject(s)
Chromatin/metabolism , DNA Helicases/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Origin Recognition Complex/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/growth & development , Chromatin/genetics , DNA Helicases/genetics , DNA-Directed DNA Polymerase/genetics , Humans , Origin Recognition Complex/genetics , Protozoan Proteins/genetics , Replication Origin , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , DNA Polymerase theta
18.
Sci Rep, v. 9, 2888, fev. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2679

ABSTRACT

DNA polymerase theta (Pol theta), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Pol theta plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Pol theta modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Pol theta in different genomic loci; one ortholog is homologous to the Pol theta C-terminal polymerase domain, and the other is homologous to the Pol theta helicase domain, called Pol theta-polymerase and Pol theta-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Pol theta-helicase from the nuclear extract. Orc1/Cdc6 and Pol theta-helicase directly interacted, and Pol theta-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Pol theta-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Pol theta-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins.

19.
Sci. Rep. ; 9: 2888, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15850

ABSTRACT

DNA polymerase theta (Pol theta), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Pol theta plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Pol theta modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Pol theta in different genomic loci; one ortholog is homologous to the Pol theta C-terminal polymerase domain, and the other is homologous to the Pol theta helicase domain, called Pol theta-polymerase and Pol theta-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Pol theta-helicase from the nuclear extract. Orc1/Cdc6 and Pol theta-helicase directly interacted, and Pol theta-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Pol theta-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Pol theta-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins.

20.
Eur J Med Chem ; 147: 1-6, 2018 Mar 10.
Article in English | MEDLINE | ID: mdl-29421567

ABSTRACT

Polyamines play critical roles as regulators of cell growth and differentiation. In contrast with other protozoa, the human parasite Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for polyamines. Therefore, their intracellular availability depends exclusively on polyamine transport and inhibition of these uptake processes can alter the viability of the parasite. The polyamine analogues used in this work were successfully tested as antiproliferative agents in cancer cells, bacteria, fungi and also showed a potent antiplasmodial effect. We evaluated the activity of these compounds on polyamine transport in T. cruzi and assessed the effects on parasite viability. Three polyamine derivatives, AMXT1501, Ant4 and Ant44, inhibited the putrescine transport in epimastigotes (the insect stage of T. cruzi) with calculated IC50 values of 2.43, 5.02 and 3.98 µM, respectively. In addition, only Ant4 and Ant44 inhibited spermidine transport with IC50 of 8.78 µM and 13.34 µM, respectively. The Ant4 analogue showed a high trypanocidal effect on trypomastigotes (the bloodstream stage of T. cruzi) with an IC50 of 460 nM, (SI = 12.7) while in epimastigotes the IC50 was significantly higher (16.97 µM). In addition, we studied the effect of the combination of benznidazole, a drug used in treating Chagas disease, with Ant4 on the viability of epimastigotes. The combined treatment produced a significant increase on the inhibition of parasites growth compared with individual treatments. In summary, these results suggest that Ant4, a putrescine conjugate, is a promising compound for the treatment of Chagas disease because it showed a potent trypanocidal effect via its inhibition of polyamine import.


Subject(s)
Polyamines/pharmacology , Trypanosoma cruzi/drug effects , Animals , Biological Transport/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Molecular Structure , Polyamines/chemistry , Putrescine/antagonists & inhibitors , Putrescine/metabolism , Spermidine/antagonists & inhibitors , Spermidine/metabolism , Structure-Activity Relationship , Trypanosoma cruzi/cytology , Trypanosoma cruzi/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL