Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Knee Surg ; 36(2): 173-180, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34225366

ABSTRACT

Tranexamic acid (TXA) is an antifibrinolytic drug that reduces blood loss in patients that undergo Total knee arthroplasty (TKA). Few studies compare its effect on conventional instrumentation (CI) versus patient-specific instrumentation (PSI). The main objective of this study was to understand analytically how TXA usage in both instrumentations influenced blood loss in TKA differently and see if the differences seen could be explained by the patient's body mass index (BMI) and gender. This nonrandomized retrospective study sample consisted of 688 TKA procedures performed on patients who had symptomatic arthrosis resistant to conservative treatment. Descriptive analysis was used to evaluate blood loss using hemoglobin (Hb) mean values and mean variation (%). The Classification and Regression Tree (CRT) method was applied to understand how the independent variables affected the dependent variable. Comparing patients submitted to the same instrumentation, where some received TXA and others did not, patients that received TXA had lower blood loss. Comparing patients who underwent TKA with different instrumentations and without the use of TXA, it was found that patients who underwent TKA with PSI had lower blood loss than those who underwent TKA with CI. However, when these same instruments were compared again, but associated with the use of TXA, the opposite was true with patients undergoing TKA with PSI showing greater blood loss than patients undergoing TKA with CI. TXA usage in TKA is significantly beneficial in minimizing blood loss and regardless of instrumentation. When using TXA, the lowest blood loss was obtained in patients with higher BMI and submitted to TKA with CI. This is most likely explained by the synergistic antifibrotic effect of TXA with adipokines, such as plasminogen activator inhibitor-1 (PAI-1), found in the femoral bone marrow which is perforated using CI. If, however, TXA wasn't used, the lowest blood loss was obtained in patients submitted to TKA with PSI.


Subject(s)
Antifibrinolytic Agents , Arthroplasty, Replacement, Knee , Tranexamic Acid , Humans , Arthroplasty, Replacement, Knee/adverse effects , Body Mass Index , Retrospective Studies , Blood Loss, Surgical/prevention & control , Postoperative Hemorrhage/prevention & control , Blood Transfusion , Administration, Intravenous
2.
J Hazard Mater ; 402: 123565, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32759002

ABSTRACT

Se is a beneficial nutrient for some plant species, while As is considered a toxic element, even at low concentrations. This study investigated the interaction between As and Se on golden flaxseed (Linum usitatissimum L.) seedlings to better understand the extent of Se in the mitigation of As uptake and translocation. In addition, co-exposure experiments allowed to determine how As and Se affected absorption and distribution of the essential micronutrients Fe, Zn and Mn. Seedlings were cultivated in a 10 % v v-1 Hoagland solution supplemented with AsV, SeIV, SeVI or AsV + SeIV at different concentrations. SeVI presented the highest toxicity and translocation factor. The toxicity of AsV was attenuated by SeIV, which stimulated As uptake and translocation. SeIV reduced As accumulation, establishing a tolerance mechanism. Only a high concentration of As (200 µmol L-1) led to leaf chlorosis or seedling death, independently of co-exposure with Se species. Co-exposure also altered the uptake of Fe, Zn and Mn, without affecting As translocation from roots to shoot. In general, the interaction of As with Se was beneficial for golden flaxseed seedlings, when compared to the effects of As solely.


Subject(s)
Flax , Oryza , Selenium , Nutrients , Plant Roots , Seedlings
3.
Sci Rep ; 8(1): 15300, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30333511

ABSTRACT

The photosynthetic adjustments of macaw palm (Acrocomia aculeata) were evaluated in 30-day-old seedlings exposed to high and low light environments, and sudden transference from low to high light and comparisons were made with the hardening protocol used in nurseries. Furthermore, we evaluated the responses to long-term exposure (265 days) to high and low light environments. Macaw palm seedlings exhibited an efficient mechanism that maximized light capture under scarce conditions, and dissipated excess energy to avoid damaging to the photosystem II under high light. The seedlings showed low saturation irradiance but no photoinhibition when exposed to excess light. When grown under low light intensities, seedlings presented higher photochemical efficiency and minimized the respiratory costs with positive carbon balance at lower irradiance than hardened seedlings did. The hardening procedure did not appear to be an advantageous method during seedling production. Long-term exposure to either low or high light did not cause significant leaf anatomical adjustments. However, the low light seedlings showed higher leaf area and chlorophyll content than those exposed to higher light intensity did, which enabled shaded seedlings to maximize the captured light. Furthermore, the high non-photochemical dissipation allowed rapid acclimation to excessive light exposure. These responses allow macaw palm cultivation and establishment in very different light environments.


Subject(s)
Acclimatization/physiology , Arecaceae/radiation effects , Light , Plant Leaves/radiation effects , Seedlings/radiation effects , Arecaceae/growth & development , Arecaceae/metabolism , Chlorophyll/metabolism , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Seedlings/growth & development , Seedlings/metabolism , Time Factors
4.
Funct Plant Biol ; 45(8): 854-864, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32291067

ABSTRACT

The structure of the Cerrado may be explained by the competition between woody and herbaceous species. However, the rising CO2 concentration ([CO2]) predicted under current climatic change may modify the ecophysiological responses of woody and herbaceous species owing to functional traits of each group, which may in turn modify vegetation structure as competitive relationships change among species. In this study we examined ecophysiological responses and competition between two cerrado species under elevated [CO2]. We selected an herbaceous alien grass (Melinis minutiflora P. Beauv.) and an endemic woody cerrado species (Hymenaea stigonocarpa Mart. ex Hayne). Hymenaea stigonocarpa individuals were maintained in three plots with different M. minutiflora densities: 0, 50 and 100% in two different [CO2] (380ppm and 700ppm) in open-top chambers. Leaf gas exchange, effective quantum efficiency of PSII, chlorophyll content, and growth increased in H. stigonocarpa plants under high [CO2]. The competition with M. minutiflora under elevated [CO2] led to an increase in specific leaf area, leaf area ratio and biomass allocation to shoots in H. stigonocarpa. In contrast, M. minutiflora had a delayed leaf development and high stem dry mass under elevated [CO2]. These changes in growth patterns under elevated [CO2] will modify allocation of resources, improving the competition potential of the woody species over the alien grass species in the Cerrado.

5.
Funct Plant Biol ; 43(12): 1183-1193, 2016 Dec.
Article in English | MEDLINE | ID: mdl-32480537

ABSTRACT

The rise in atmospheric CO2 concentration ([CO2]) has been accompanied by changes in other environmental factors of global climate change, such as drought. Tracking the early growth of plants under changing conditions can determine their ecophysiological adjustments and the consequences for ecosystem functions. This study investigated long-term ecophysiological responses in three woody Cerrado species: Hymenaea stigonocarpa Mart. ex Hayne, Solanum lycocarpum A. St.-Hil. and Tabebuia aurea (Silva Manso) Benth. and Hook. f. ex S. Moore, grown under ambient and elevated [CO2]. Plants were grown for 515 days at ambient (430mgdm-3) or elevated [CO2] (700mgdm-3). Some plants were also subjected to water stress to investigate the synergy between atmospheric [CO2] and soil water availability, and its effect on plant growth. All three species showed an increase in maximum net photosynthesis (PN) and chlorophyll index under high [CO2]. Transpiration decreased in some species under high [CO2] despite daily watering and a corresponding increase in water use efficiency was observed. Plants grown under elevated [CO2] and watered daily had greater leaf area and total biomass production than plants under water stress and ambient [CO2]. The high chlorophyll and PN in cerrado plants grown under elevated [CO2] are an investment in light use and capture and higher Rubisco carboxylation rate, respectively. The elevated [CO2] had a positive influence on biomass accumulation in the cerrado species we studied, as predicted for plants under high [CO2]. So, even with water stress, Cerrado species under elevated [CO2] had better growth.

6.
Environ Manage ; 42(1): 111-21, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18320266

ABSTRACT

In the coastal zone of the Espírito Santo state, Brazil, fragments of restinga, which form a natural ecosystem, share their space with an increasing number of iron ore industries. The iron ore dust and SO(2) originating from the industry processing activities can interfere with the vegetation of the adjacent ecosystems at various levels. This study was undertaken in order to evaluate the effects of industry emissions on representative members of the restinga flora, by measuring physiological and phenological parameters. Foliar samples of Ipomoea pes caprae, Canavalia rosea, Sophora tomentosa, and Schinus terebinthifolius were collected at three increasing distances from an ore industry (1.0, 5.0, and 15.0 km), and were assessed for their dust deposition, chlorophyll, and Fe content. Phenological monitoring was focused on the formation of shoots, flowers, and fruits and was also performed throughout the course of a year. The results showed that the edaphic characteristics and the mineral constitutions of the plants were affected by industry emissions. In addition, the chlorophyll content of the four species increased with proximity to the industry. Phenological data revealed that the reproductive effort, as measured by fruit production, was affected by emissions and S. tomentosa was the most affected species. The use of an integrative approach that combines biochemical and ecological data indicates that the restinga flora is under stress due to industry emissions, which on a long-term basis may put the ecosystem at risk.


Subject(s)
Air Pollutants/toxicity , Chemical Industry , Ecology , Industrial Waste , Iron , Plants/drug effects , Tropical Climate , Chlorophyll/metabolism , Plants/metabolism , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL