Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38645169

ABSTRACT

Breast cancer is the second most common cancer globally. Most deaths from breast cancer are due to metastatic disease which often follows long periods of clinical dormancy1. Understanding the mechanisms that disrupt the quiescence of dormant disseminated cancer cells (DCC) is crucial for addressing metastatic progression. Infection with respiratory viruses (e.g. influenza or SARS-CoV-2) is common and triggers an inflammatory response locally and systemically2,3. Here we show that influenza virus infection leads to loss of the pro-dormancy mesenchymal phenotype in breast DCC in the lung, causing DCC proliferation within days of infection, and a greater than 100-fold expansion of carcinoma cells into metastatic lesions within two weeks. Such DCC phenotypic change and expansion is interleukin-6 (IL-6)-dependent. We further show that CD4 T cells are required for the maintenance of pulmonary metastatic burden post-influenza virus infection, in part through attenuation of CD8 cell responses in the lungs. Single-cell RNA-seq analyses reveal DCC-dependent impairment of T-cell activation in the lungs of infected mice. SARS-CoV-2 infected mice also showed increased breast DCC expansion in lungs post-infection. Expanding our findings to human observational data, we observed that cancer survivors contracting a SARS-CoV-2 infection have substantially increased risks of lung metastatic progression and cancer-related death compared to cancer survivors who did not. These discoveries underscore the significant impact of respiratory viral infections on the resurgence of metastatic cancer, offering novel insights into the interconnection between infectious diseases and cancer metastasis.

2.
Nutr Cancer ; 73(4): 642-651, 2021.
Article in English | MEDLINE | ID: mdl-32406264

ABSTRACT

There is a strong correlation between obesity and cancer. Here, we investigated the influence of IL-6 and gut microbiota of obese mice in melanoma development. We first evaluated B16F10 melanoma growth in preclinical models for obesity: mice deficient for leptin (ob/ob) or adiponectin (AdpKO) and in wild-type mice (WT, C57BL/6J) fed a high-fat diet (HFD; 60% kcal from fat) for 12 weeks. The survival rates of ob/ob and HFD-fed mice were lower than those of their respective controls. AdpKO mice also died earlier than WT control mice. We then verified the involvement of IL-6 signaling in obese mice that were inoculated with melanoma cells. Both ob/ob and AdpKO mice had higher circulating IL-6 levels than wild-type mice. Melanoma tumor volumes in IL-6 KO mice fed an HFD were reduced compared to those of WT mice subjected to the same diet. Also evaluated the effect of microbiota in tumor development. Cohousing and fecal matter transfer experiments revealed that microbiota from ob/ob mice can stimulate tumor development in lean WT mice. Taken together, our data show that in some conditions IL-6 and the gut microbiota are key mediators that link obesity and melanoma.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Animals , Diet, High-Fat/adverse effects , Interleukin-6 , Leptin , Mice , Mice, Inbred C57BL , Mice, Obese
3.
Bioorg Med Chem ; 27(12): 2537-2545, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30962115

ABSTRACT

Protease roles in cancer progression have been demonstrated and their inhibitors display antitumor effects. Cathepsins are lysosomal cysteine proteases that have increased expression in tumor cells, and tellurium compounds were described as potent cysteine protease inhibitors and also assayed in several animal models. In this work, the two enantiomeric forms of 1-[Butyl(dichloro)-λ4-tellanyl]-2-[1S-methoxyethyl]benzene (organotelluranes RF-13R and RF-13S) were evaluated as inhibitors of cathepsins B and L, showing significant enantiodiscrimination. We observed their cytotoxic effects on a murine melanoma model, effectively inhibiting tumor progression in vivo. The enantiomers were able to inhibit melanoma cell viability, migration and invasion in vitro. Besides, RF-13S and RF-13R were able to inhibit endothelial cell angiogenesis using a tube formation assay in vitro, in a stereodependent manner. These organotelluranes affected cell morphology, showing disassembling of the actin cytoskeleton. These results suggest organotelluranes as potential antitumor agents, acting directly on tumor cell proliferation, migration and invasion, and on endothelial cells, disrupting angiogenesis, showing low toxicity and high efficiency. Taken together our results suggest that this class of compounds should be further studied to reveal their potential as antitumoral agents.


Subject(s)
Antineoplastic Agents/therapeutic use , Melanoma, Experimental/drug therapy , Organometallic Compounds/chemistry , Tellurium/chemistry , Actin Cytoskeleton/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Male , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Organometallic Compounds/pharmacology , Organometallic Compounds/therapeutic use , Stereoisomerism
4.
Oncotarget ; 9(40): 25808-25825, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29899823

ABSTRACT

The antitumor effect of metformin has been demonstrated in several types of cancer; however, the mechanisms involved are incompletely understood. In this study, we showed that metformin acts directly on melanoma cells as well as on the tumor microenvironment, particularly in the context of the immune response. In vitro, metformin induces a complex interplay between apoptosis and autophagy in melanoma cells. The anti-metastatic activity of metformin in vivo was assessed in several mouse models challenged with B16F10 cells. Metformin's activity was, in part, immune system-dependent, whereas its antitumor properties were abrogated in immunodeficient (NSG) mice. Metformin treatment increased the number of lung CD8-effector-memory T and CD4+Foxp3+IL-10+ T cells in B16F10-transplanted mice. It also decreased the levels of Gr-1+CD11b+ and RORγ+ IL17+CD4+ cells in B16F10-injected mice and the anti-metastatic effect was impaired in RAG-1-/- mice challenged with B16F10 cells, suggesting an important role for T cells in the protection induced by metformin. Finally, metformin in combination with the clinical metabolic agents rapamycin and sitagliptin showed a higher antitumor effect. The metformin/sitagliptin combination was effective in a BRAFV600E/PTEN tamoxifen-inducible murine melanoma model. Taken together, these results suggest that metformin has a pronounced effect on melanoma cells, including the induction of a strong protective immune response in the tumor microenvironment, leading to tumor growth control, and the combination with other metabolic agents may increase this effect.

5.
Circulation ; 134(23): 1866-1880, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27803035

ABSTRACT

BACKGROUND: Inflammation is a key feature of aldosterone-induced vascular damage and dysfunction, but molecular mechanisms by which aldosterone triggers inflammation remain unclear. The NLRP3 inflammasome is a pivotal immune sensor that recognizes endogenous danger signals triggering sterile inflammation. METHODS: We analyzed vascular function and inflammatory profile of wild-type (WT), NLRP3 knockout (NLRP3-/-), caspase-1 knockout (Casp-1-/-), and interleukin-1 receptor knockout (IL-1R-/-) mice treated with vehicle or aldosterone (600 µg·kg-1·d-1 for 14 days through osmotic mini-pump) while receiving 1% saline to drink. RESULTS: Here, we show that NLRP3 inflammasome plays a central role in aldosterone-induced vascular dysfunction. Long-term infusion of aldosterone in mice resulted in elevation of plasma interleukin-1ß levels and vascular abnormalities. Mice lacking the IL-1R or the inflammasome components NLRP3 and caspase-1 were protected from aldosterone-induced vascular damage. In vitro, aldosterone stimulated NLRP3-dependent interleukin-1ß secretion by bone marrow-derived macrophages by activating nuclear factor-κB signaling and reactive oxygen species generation. Moreover, chimeric mice reconstituted with NLRP3-deficient hematopoietic cells showed that NLRP3 in immune cells mediates aldosterone-induced vascular damage. In addition, aldosterone increased the expression of NLRP3, active caspase-1, and mature interleukin-1ß in human peripheral blood mononuclear cells. Hypertensive patients with hyperaldosteronism or normal levels of aldosterone exhibited increased activity of NLRP3 inflammasome, suggesting that the effect of hyperaldosteronism on the inflammasome may be mediated through high blood pressure. CONCLUSIONS: Together, these data demonstrate that NLRP3 inflammasome, through activation of IL-1R, is critically involved in the deleterious vascular effects of aldosterone, placing NLRP3 as a potential target for therapeutic interventions in conditions with high aldosterone levels.


Subject(s)
Aldosterone/pharmacology , Mesenteric Arteries/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acetylcholine/pharmacology , Animals , Bone Marrow Cells/cytology , Bone Marrow Transplantation , Caspase 1/deficiency , Caspase 1/genetics , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1beta/blood , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Male , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nigericin/pharmacology , Reactive Oxygen Species/metabolism , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/genetics , Signal Transduction/drug effects , Vascular Diseases/chemically induced
6.
Oncoimmunology ; 5(7): e1178420, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27622031

ABSTRACT

Despite the recent approval of new agents for metastatic melanoma, its treatment remains challenging. Moreover, few available immunotherapies induce a strong cellular immune response, and selection of the correct immunoadjuvant is crucial for overcoming this obstacle. Here, we studied the immunomodulatory properties of arazyme, a bacterial metalloprotease, which was previously shown to control metastasis in a murine melanoma B16F10-Nex2 model. The antitumor activity of arazyme was independent of its proteolytic activity, since heat-inactivated protease showed comparable properties to the active enzyme; however, the effect was dependent on an intact immune system, as antitumor properties were lost in immunodeficient mice. The protective response was IFNγ-dependent, and CD8(+) T lymphocytes were the main effector antitumor population, although B and CD4(+) T lymphocytes were also induced. Macrophages and dendritic cells were involved in the induction of the antitumor response, as arazyme activation of these cells increased both the expression of surface activation markers and proinflammatory cytokine secretion through TLR4-MyD88-TRIF-dependent, but also MAPK-dependent pathways. Arazyme was also effective in the murine breast adenocarcinoma 4T1 model, reducing primary and metastatic tumor development, and prolonging survival. To our knowledge, this is the first report of a bacterial metalloprotease interaction with TLR4 and subsequent receptor activation that promotes a proinflammatory and tumor protective response. Our results show that arazyme has immunomodulatory properties, and could be a promising novel alternative for metastatic melanoma treatment.

7.
Clin Immunol ; 168: 6-15, 2016 07.
Article in English | MEDLINE | ID: mdl-27132023

ABSTRACT

In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Galactosylceramides/pharmacology , Killer Cells, Natural/drug effects , Lipid A/analogs & derivatives , Toll-Like Receptor 4/agonists , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Drug Synergism , Epitopes, T-Lymphocyte/immunology , Galactosylceramides/administration & dosage , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , Humans , Immunization/methods , Immunologic Memory/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lipid A/administration & dosage , Lipid A/pharmacology , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Models, Immunological , Peptides/immunology , Plasmodium yoelii/immunology , Plasmodium yoelii/physiology , Protective Agents/administration & dosage , Protective Agents/pharmacology , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Toll-Like Receptor 4/metabolism , WT1 Proteins/genetics , WT1 Proteins/immunology
8.
Immunol Cell Biol ; 93(1): 86-98, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25223833

ABSTRACT

Current therapies against malignant melanoma generally fail to increase survival in most patients, and immunotherapy is a promising approach as it could reduce the dosage of toxic therapeutic drugs. In the present study, we show that an immunotherapeutic approach based on the use of the Toll-like receptor (TLR)-5 ligand flagellin (Salmonella Typhimurium FliCi) combined with the major histocompatibility complex class II-restricted P10 peptide, derived from the Paracoccidioides brasiliensis gp43 major surface protein, reduced the number of lung metastasis in a murine melanoma model. Compounds were administered intranasally into C57Bl/6 mice intravenously challenged with syngeneic B16F10-Nex2 melanoma cells, aiming at the local (pulmonary) immune response modulation. Along with a marked reduction in the number of lung nodules, a significant increase in survival was observed. The immunization regimen induced both local and systemic proinflammatory responses. Lung macrophages were polarized towards a M1 phenotype, lymph node cells, and splenocytes secreted higher interleukin-12p40 and interferon (IFN)-γ levels when re-stimulated with tumor antigens. The protective effect of the FliCi+P10 formulation required TLR-5, myeloid differentiation primary response gene 88 and IFN-γ expression, but caspase-1 knockout mice were only partially protected, suggesting that intracellular flagellin receptors are not involved with the anti-tumor effect. The immune therapy resulted in the activation of tumor-specific CD4(+) T lymphocytes, which conferred protection to metastatic melanoma growth after adoptive transfer. Taken together, our results report a new immunotherapeutic approach based on TLR-5 activation and IFN-γ production capable to control the metastatic growth of B16F10-Nex2 melanoma, being a promising alternative to be associated with chemotherapeutic drugs for an effective anti-tumor responses.


Subject(s)
Antigens, Bacterial/immunology , Cancer Vaccines/immunology , Flagellin/immunology , Glycoproteins/immunology , Immunotherapy/methods , Lung Neoplasms/therapy , Melanoma, Experimental/therapy , Peptide Fragments/immunology , Administration, Intranasal , Administration, Mucosal , Animals , Antigens, Bacterial/administration & dosage , Antigens, Bacterial/genetics , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Caspase 1/deficiency , Caspase 1/genetics , Flagellin/administration & dosage , Flagellin/genetics , Gene Expression , Glycoproteins/administration & dosage , Glycoproteins/genetics , Injections, Intravenous , Interferon-gamma/agonists , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-12 Subunit p40/biosynthesis , Interleukin-12 Subunit p40/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Neoplasm Metastasis , Peptide Fragments/administration & dosage , Peptide Fragments/genetics , Toll-Like Receptor 5/agonists , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/immunology
9.
Pharmacogn Mag ; 10(Suppl 2): S363-76, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24991116

ABSTRACT

BACKGROUND: Pyrostegia venusta (Ker. Gawl.) Miers (Bignoniacea) is a medicinal plant from the Brazilian Cerrado used to treat leucoderma and common diseases of the respiratory system. OBJECTIVE: To investigate the antitumor activity of P.venusta extracts against melanoma. MATERIALS AND METHODS: The cytotoxic activity and tumor induced cell death of heptane extract (HE) from P. venusta flowers was evaluated against murine melanoma B16F10-Nex2 cells in vitro and in a syngeneic model in vivo. RESULTS: We found that HE induced apoptosis in melanoma cells by disruption of the mitochondrial membrane potential, induction of reactive oxygen species and late apoptosis evidenced by plasma membrane blebbing, cell shrinkage, chromatin condensation and DNA fragmentation, exposure of phosphatidylserine on the cell surface and activation of caspase-2,-3,-8,-9. HE was also protective against singeneyc subcutaneous melanoma HE compounds were also able to induce cell cycle arrest at G2/M phases on tumor cells. On fractionation of HE in silica gel we isolated a cytotoxic fraction that contained a mixture of saturated hydrocarbons identified by (1)H NMR and GC-MS analyses. Predominant species were octacosane (C28H58-36%) and triacontane (C30H62-13%), which individually showed significant cytotoxic activity against murine melanoma B16F10-Nex2 cells in vitro and a very promising antitumor protection against subcutaneous melanoma in vivo. CONCLUSION: The results suggest that the components of the heptane extract, mainly octasane and triacontane, which showed antitumor properties in experimental melanoma upon regional administration, might also be therapeutic in human cancer, such as in the mostly epidermal and slowly invasive melanomas, such as acral lentiginous melanoma, as an adjuvant treatment to surgical excision.

10.
PLoS One ; 9(4): e96141, 2014.
Article in English | MEDLINE | ID: mdl-24788523

ABSTRACT

The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent.


Subject(s)
Matrix Metalloproteinase 8/immunology , Melanoma, Experimental/pathology , Metalloproteases/pharmacology , Neoplasm Metastasis/prevention & control , Serratia/enzymology , Animals , Base Sequence , Cross Reactions , DNA Primers , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
11.
Clinics (Sao Paulo) ; 68(7): 1018-27, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23917669

ABSTRACT

OBJECTIVE: Available chemotherapy presents poor control over the development of metastatic melanoma. FTY720 is a compound already approved by the Food and Drug Administration for the treatment of patients with multiple sclerosis. It has also been observed that FTY720 inhibits tumor growth in vivo (experimental models) and in vitro (animal and human tumor cells). The aim of this study was to evaluate the effects of FTY720 on a metastatic melanoma model and in tumor cell lines. METHODS: We analyzed FTY720 efficacy in vivo in a syngeneic murine metastatic melanoma model, in which we injected tumor cells intravenously into C57BL/6 mice and then treated the mice orally with the compound for 7 days. We also treated mice and human tumor cell lines with FTY720 in vitro, and cell viability and death pathways were analyzed. RESULTS: FTY720 treatment limited metastatic melanoma growth in vivo and promoted a dose-dependent decrease in the viability of murine and human tumor cells in vitro. Melanoma cells treated with FTY720 exhibited characteristics of programmed cell death, reactive oxygen species generation, and increased ß-catenin expression. In addition, FTY720 treatment resulted in an immunomodulatory effect in vivo by decreasing the percentage of Foxp3+ cells, without interfering with CD8+ T cells or lymphocyte-producing interferon-gamma. CONCLUSION: Further studies are needed using FTY720 as a monotherapy or in combined therapy, as different types of cancer cells would require a variety of signaling pathways to be extinguished.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Immunosuppressive Agents/therapeutic use , Lung Neoplasms/drug therapy , Melanoma, Experimental/drug therapy , Propylene Glycols/therapeutic use , Sphingosine/analogs & derivatives , Animals , Blotting, Western , Caspase 3/drug effects , Cell Line, Tumor , Cell Survival , Drug Screening Assays, Antitumor/methods , Fingolimod Hydrochloride , Flow Cytometry , Humans , Lung Neoplasms/secondary , Male , Melanoma, Experimental/pathology , Melanoma, Experimental/secondary , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Reactive Oxygen Species , Sphingosine/therapeutic use , Time Factors
12.
Clinics ; 68(7): 1018-1027, jul. 2013. graf
Article in English | LILACS | ID: lil-680698

ABSTRACT

OBJECTIVE: Available chemotherapy presents poor control over the development of metastatic melanoma. FTY720 is a compound already approved by the Food and Drug Administration for the treatment of patients with multiple sclerosis. It has also been observed that FTY720 inhibits tumor growth in vivo (experimental models) and in vitro (animal and human tumor cells). The aim of this study was to evaluate the effects of FTY720 on a metastatic melanoma model and in tumor cell lines. METHODS: We analyzed FTY720 efficacy in vivo in a syngeneic murine metastatic melanoma model, in which we injected tumor cells intravenously into C57BL/6 mice and then treated the mice orally with the compound for 7 days. We also treated mice and human tumor cell lines with FTY720 in vitro, and cell viability and death pathways were analyzed. RESULTS: FTY720 treatment limited metastatic melanoma growth in vivo and promoted a dose-dependent decrease in the viability of murine and human tumor cells in vitro. Melanoma cells treated with FTY720 exhibited characteristics of programmed cell death, reactive oxygen species generation, and increased β-catenin expression. In addition, FTY720 treatment resulted in an immunomodulatory effect in vivo by decreasing the percentage of Foxp3+ cells, without interfering with CD8+ T cells or lymphocyte-producing interferon-gamma. CONCLUSION: Further studies are needed using FTY720 as a monotherapy or in combined therapy, as different types of cancer cells would require a variety of signaling pathways to be extinguished. .


Subject(s)
Animals , Humans , Male , Mice , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Immunosuppressive Agents/therapeutic use , Lung Neoplasms/drug therapy , Melanoma, Experimental/drug therapy , Propylene Glycols/therapeutic use , Sphingosine/analogs & derivatives , Blotting, Western , Cell Line, Tumor , Cell Survival , /drug effects , Drug Screening Assays, Antitumor/methods , Flow Cytometry , Lung Neoplasms/secondary , Microscopy, Electron, Transmission , Melanoma, Experimental/pathology , Melanoma, Experimental/secondary , Reactive Oxygen Species , Sphingosine/therapeutic use , Time Factors
13.
J Biol Chem ; 287(18): 14912-22, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22334655

ABSTRACT

Complementarity-determining regions (CDRs) from monoclonal antibodies tested as synthetic peptides display anti-infective and antitumor activities, independent of the specificity of the native antibody. Previously, we have shown that the synthetic peptide C7H2, based on the heavy chain CDR 2 from monoclonal antibody C7, a mAb directed to a mannoprotein of Candida albicans, significantly reduced B16F10 melanoma growth and lung colony formation by triggering tumor apoptosis. The mechanism, however, by which C7H2 induced apoptosis in tumor cells remained unknown. Here, we demonstrate that C7H2 interacts with components of the tumor cells cytoskeleton, being rapidly internalized after binding to the tumor cell surface. Mass spectrometry analysis and in vitro validation revealed that ß-actin is the receptor of C7H2 in the tumor cells. C7H2 induces ß-actin polymerization and F-actin stabilization, linked with abundant generation of superoxide anions and apoptosis. Major phenotypes following peptide binding were chromatin condensation, DNA fragmentation, annexin V binding, lamin disruption, caspase 8 and 3 activation, and organelle alterations. Finally, we evaluated the cytotoxic efficacy of C7H2 in a panel of human tumor cell lines. All tumor cell lines studied were equally susceptible to C7H2 in vitro. The C7H2 amide without further derivatization significantly reduced lung metastasis of mice endovenously challenged with B16F10-Nex2 melanoma cells. No significant cytotoxicity was observed toward nontumorigenic cell lines on short incubation in vitro or in naïve mice injected with a high dose of the peptide. We believe that C7H2 is a promising peptide to be developed as an anticancer drug.


Subject(s)
Actins/immunology , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antibodies, Neoplasm/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Immunoglobulin Heavy Chains/pharmacology , Immunoglobulin Variable Region/pharmacology , Melanoma/prevention & control , Neoplasm Proteins/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Antineoplastic Agents/immunology , Candida albicans/immunology , Caspase 3/immunology , Caspase 8/immunology , Cell Line, Tumor , DNA Fragmentation/drug effects , DNA, Neoplasm/immunology , Fungal Proteins/immunology , Humans , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Variable Region/immunology , Male , Melanoma/immunology , Melanoma/pathology , Membrane Glycoproteins/immunology , Mice , Neoplasm Metastasis
14.
BMC Cancer ; 11: 296, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21756336

ABSTRACT

BACKGROUND: Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd(2) [S((-))C(2), N-dmpa](2) (µ-dppe)Cl(2)} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. METHODS: B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. RESULTS: Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. CONCLUSIONS: The cyclopalladated C7a complex is an effective chemotherapeutic anticancer compound against primary and metastatic murine and human tumors, including cisplatin-resistant cells, inducing apoptotic cell death via the intrinsic pathway.


Subject(s)
Apoptosis/drug effects , Mitochondrial Proteins/drug effects , Organometallic Compounds/pharmacology , Palladium/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Caspases/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Enzyme Activation/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Palladium/chemistry , Palladium/metabolism , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism , bcl-2-Associated X Protein/metabolism
15.
Biochem Biophys Res Commun ; 411(2): 449-54, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21756878

ABSTRACT

Malignant melanoma is one the most aggressive types of cancer and its incidence has gradually increased in the last years, accounting for about 75% of skin cancer deaths. This poor prognosis results from the tumor resistance to conventional drugs mainly by deregulation of apoptotic pathways. The aim of this work was to investigate the cell death mechanism induced by α-pinene and its therapeutic application. Our results demonstrated that α-pinene was able to induce apoptosis evidenced by early disruption of the mitochondrial potential, production of reactive oxygen species, increase in caspase-3 activity, heterochromatin aggregation, DNA fragmentation and exposure of phosphatidyl serine on the cell surface. Most importantly, this molecule was very effective in the treatment of experimental metastatic melanoma reducing the number of lung tumor nodules. This is the first report on the apoptotic and antimetastatic activity of isolated α-pinene.


Subject(s)
Anacardiaceae/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Melanoma, Experimental/prevention & control , Melanoma, Experimental/secondary , Monoterpenes/therapeutic use , Skin Neoplasms/drug therapy , Animals , Bicyclic Monoterpenes , Cell Line, Tumor , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...