ABSTRACT
AIM: To evaluate the potential biostimulatory effects of grape seed extract (GSE) on a primary culture of human pulp cells. METHODOLOGY: Human molars were used to obtain the primary pulp cell culture and 0.5-mm dentine discs. For GSE direct exposure, dose-response (0.0065-6.5%) and time response (1-60 min of contact) were examined. For transdentinal exposure, 0.65% of GSE was tested for 24 h. Cellular metabolism, nitric oxide and collagen production, and cell morphology alterations were assessed at periods of 24 and 72 h. After cell differentiation and direct exposure to GSE, the total protein production (TP), alkaline phosphatase activity (ALP) and formation of mineralization nodules (MN) were assessed. The results were analysed by parametric tests or non-parametric tests (α = 0.05). RESULTS: The lower concentration of GSE tested (0.0065%) was associated with an increase in cellular metabolism, a reduction in the production of nitric oxide and an increase in extracellular matrix synthesis (collagen). Distinct behaviours were observed for the different concentrations, without a reduction of cellular metabolism >10% compared with the control, either when applied directly or transdentinally. SEM revealed no significant change in cell morphology, except for the positive control (H2 O2 ). There was no difference in TP, ALP or MN between the control group and the group exposed to GSE. CONCLUSIONS: Treatment with grape seed extract, even at the highest concentration and longest period, caused neither direct nor transdentinal cytotoxic effects on human pulp cells. Grape seed extract components may play a biostimulatory role and protect dental pulp cells when in direct contact.
Subject(s)
Grape Seed Extract , Proanthocyanidins , Cell Differentiation , Dental Pulp , Dentin , HumansABSTRACT
The effect of gamma irradiation therapy on the ultimate tensile strength (UTS) of enamel and dentin in relation to prism orientation, dentin tubule orientation, and location is unknown. It was hypothesized that tubule and prism orientation, location, and irradiation have an effect on the UTS of dental structures. Forty human third molars were used, half of which were subjected to 60 Gy of gamma irradiation, in daily increments of 2 Gy. The specimens were evaluated by microtensile testing. Results showed that irradiation treatment significantly decreased the UTS of coronal and radicular dentin and of enamel, regardless of tubule or prism orientation. With or without irradiation, enamel was significantly stronger when tested parallel to its prismatic orientation. Coronal and radicular dentin of non-irradiated specimens presented significantly higher UTS when tested perpendicularly to tubule orientation. However, when the teeth were irradiated, the influence of tubule orientation disappeared, demonstrating that irradiation is more harmful to organic components.
Subject(s)
Cranial Irradiation/adverse effects , Dental Enamel/radiation effects , Dentin/radiation effects , Gamma Rays/adverse effects , Collagen/radiation effects , Crystallization , Dental Enamel/ultrastructure , Dental Stress Analysis , Dentin/ultrastructure , Humans , Tensile StrengthABSTRACT
OBJECTIVE: To evaluate the effects of intracoronal bleaching on ultimate tensile strength (UTS) of sound and etched dentine and its ultrastructure morphology. METHODOLOGY: Bovine dentine specimens with (e) or without previous etching with 37% phosphoric acid for 15 s were used for the intracoronal bleaching experiments. Teeth were randomly assigned to five treatments (n = 10): (C) control--no bleaching, (SP) sodium perborate, (CP) 35% carbamide peroxide, (25% HP) 25% hydrogen peroxide and (35% HP) 35% hydrogen peroxide. Bleaching was performed four times within a 72 h interval and afterwards, dentine pulp chamber blocks were obtained. The blocks were sectioned in 0.7 mm-thick slices and these were trimmed to reduce the inner dentine to a dumbbell shape with a cross-sectional area of 0.8 mm(2). Specimens were tested with the microtensile method (0.5 mm min(-1)) and data were analysed (two-way ANOVA-Tukey test, P < 0.05). Additional teeth were prepared for transmission electron microscopy (TEM) to evaluate dentine ultramorphology. RESULTS: The mean values of the UTS (SD) in MPa for sound dentine were: C = 48.3(8.5)a, SP = 34.6 (8.2)b, CP = 32.9 (8.9)b, 25% HP = 28.0(4.6)b, 35% HP = 26.4(6.6)b, and pre-etched dentine: Ce = 38.9(13.8)a, SPe = 31.3 (9.3)ab, CPe = 28.4 (6.2)ab, 25% HPe = 30.0 (7.9)ab, 35% HPe = 19.9(4.6)b. Significant differences between the means are indicated by the letters. TEM observations exhibited demineralization areas for all bleaching treatments. CONCLUSION: Bleaching decreased dentine UTS after treatment. Pre-etched not-bleached dentine (Ce) presented UTS similar to pre-etched bleached dentine, except for 35% HPe. The decrease of UTS of bleached dentine could be attributed to ultrastructural alterations such as loss of inorganic components.
Subject(s)
Dental Pulp Cavity/drug effects , Dentin/drug effects , Oxidants/pharmacology , Tooth Bleaching/methods , Acid Etching, Dental , Animals , Apatites/analysis , Borates/administration & dosage , Borates/pharmacology , Carbamide Peroxide , Cattle , Collagen/drug effects , Collagen/ultrastructure , Dental Pulp Cavity/ultrastructure , Dentin/ultrastructure , Drug Combinations , Hydrogen Peroxide/administration & dosage , Hydrogen Peroxide/pharmacology , Microscopy, Electron, Transmission , Oxidants/administration & dosage , Peroxides/administration & dosage , Peroxides/pharmacology , Phosphoric Acids/administration & dosage , Random Allocation , Smear Layer , Stress, Mechanical , Tensile Strength , Time Factors , Tooth Demineralization/chemically induced , Tooth Demineralization/pathology , Tooth, Nonvital/pathology , Urea/administration & dosage , Urea/analogs & derivatives , Urea/pharmacologyABSTRACT
The aim of this study was to examine the effectiveness of single-step self-etching adhesives in preventing nanoleakage over a 90-day water-storage period, and analyse the ultramorphological characteristics of resin-dentin interfaces. Three single-step self-etching adhesives were evaluated: Adper Prompt L-Pop - LP (3M ESPE), iBond - iB (Heraeus Kulzer), and Clearfil Tri-S Bond - S3 (Kuraray). Bonded specimens were sectioned into 0.9-mm thick slabs and stored in water for 1, 60 or 90 days. After the storage periods, a silver tracer solution was used to reveal nanometer-sized spaces and evidence of degradation within resin-dentin interfaces. Epoxy resin-embedded sections were prepared, and the interfaces observed with the TEM. Nanoleakage patterns were compared among adhesives and storage periods using image analysis software. Data were statistically analysed by two-way anova and Tukey test. Nanoleakage was observed in all resin-dentin interfaces produced by the single-step self-etching adhesives. Results showed that LP presented the lowest silver deposition means at 1 day. However, after 60 and 90 days, the area of silver deposition significantly increased for LP. iB presented intense silver deposition after 1 day and a small increase after 90 days. S3 presented the lowest silver deposition means after 60 and 90 days of water-storage.