Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 86: 128-137, 2019 06.
Article in English | MEDLINE | ID: mdl-31358272

ABSTRACT

Cyanobacteria are known to produce a wide variety of bioactive, toxic secondary metabolites generally described as hepatotoxins, neurotoxins, cytotoxins, or dermatoxins. In Brazil, the regular monitoring of cyanobacterial toxins has intensified after the death of 65 patients in a hemodialysis clinic in Caruaru in the state of Pernambuco due to microcystin exposure. The primary objective of this study was to use multivariate statistics that incorporated environmental parameters (both biotic and abiotic) to forecast blooms of cyanobacteria and their toxic secondary metabolites in 20 drinking water reservoirs managed by the Water Treatment Company of Ceará (CAGECE) in the semi-arid region of Ceará, Brazil. Across four years (January 2013 to January 2017), 114 different phytoplankton taxa were identified, including 24 cyanobacterial taxa. In general, Ceará reservoirs were dominated by cyanobacteria due to eutrophication but also because of the dry and warm climate found throughout the region. Interestingly, specific cyanobacterial taxa were influenced by different biotic and abiotic factors. For example, nitrogen-to-phosphorus (N:P) and evaporation were positively related to saxitoxin-producing taxa, especially Raphidiopsis raciborskii, while temperature, electrical conductivity, total phosphorus, and transparency (measured as Secchi depth) were positively associated with microcystin-producing taxa, such as Microcystis aeruginosa. Climate forecasts predict higher evaporation and temperatures in the semi-arid Ceará region, which will likely magnify droughts and water scarcity as well as promote toxic cyanobacterial blooms in reservoirs in the future. Therefore, understanding the factors associated with algal blooms dominated by specific taxa is paramount for water resource management.


Subject(s)
Cyanobacteria , Drinking Water , Brazil , Environmental Monitoring , Fresh Water , Humans
2.
Phytochemistry ; 61(3): 301-10, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12359516

ABSTRACT

A lectin was purified from the cotyledons of Luetzelburgia auriculata (Fr. All) Ducke by affinity chromatography on agarose-N-acetyl-D-galactosamine. The lectin is a potent agglutinin for rabbit erythrocytes, reacts with human red cells, but is inactive against cow, sheep, and goat erythrocytes. Hemagglutination of rabbit erythrocytes was inhibited by either 0.39 mM N-acetyl-neuraminic acid or N-acetyl-D-galactosamin, 12.5 mM D-lactose or D-melibiose, 50 mM D-galactose or raffinose. Its hemagglutinating activity was lost at 80 degrees C, 5 min, and the activation energy required for denaturation was 104.75 kJ mol(-1). Chromatography on Sephadex G-100, at pH 7.6, showed that at this hydrogenic ionic concentration the native lectin was a homotetramer (123.5 kDa). By denaturing SDS-PAGE, LAA seemed to be composed of a mixture of 29 and 15 kDa polypeptide subunits. At acidic and basic pHs it assumed different conformations, as demonstrated by exclusion chromatography on Superdex 200 HR 10/30. The N-terminal sequence of the 29 kDa band was SEVVSFSFTKFNPNQKDII and the 15 kDa band contained a mixture of SEVVSFSFTKFNPNQKDII and KFNQIVAVEEDTDXESQPQ sequences, indicating that these bands may represent full-length and its endogenous fragments, respectively. The lectin is a glycoprotein having 3.2% neutral carbohydrate, with a pI of 5.8, containing high levels of Asp+Asn and Glu+Gln and hydroxy amino acids, and low amount or absence of sulfur amino acids. Its absorption spectrum showed a maximum at 280 nm and a epsilon (1%) x (1cm) of 5.2. Its CD spectrum was characterized by minima near 228 nm, maxima near 196 nm and a negative to positive crossover at 210 nm. The secondary structure content was 6% alpha-helix, 8% parallel beta-sheet, 38% antiparallel beta-sheet, 17% beta-turn, 31% unordered and others contribution, and 1% RMS (root mean square). In the fluorescence spectroscopy, excitation of the lectin solution at 280 nm gave an emission spectrum in the 285-445 nm range. The wavelength maximum emission was in 334.5 nm, typical for tryptophan residues buried inside the protein.


Subject(s)
Fabaceae/chemistry , Lectins/chemistry , Lectins/isolation & purification , Amino Acid Sequence , Amino Acids/analysis , Carbohydrates/analysis , Chromatography, Ion Exchange , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Hemagglutination , Hot Temperature , Hydrogen-Ion Concentration , Isoelectric Focusing , Lectins/metabolism , Molecular Sequence Data , Molecular Weight , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...