Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(4)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37111694

ABSTRACT

Transfersomes have been highlighted as an interesting nanotechnology-based approach to facilitate the skin delivery of bioactive compounds. Nevertheless, the properties of these nanosystems still need to be improved to enable knowledge transfer to the pharmaceutical industry and the development of more efficacious topical medicines. Quality-by-design strategies, such as Box-Behnken factorial design (BBD), are in line with the current need to use sustainable processes to develop new formulations. Thus, this work aimed at optimizing the physicochemical properties of transfersomes for cutaneous applications, by applying a BBD strategy to incorporate mixed edge activators with opposing hydrophilic-lipophilic balance (HLB). Tween® 80 and Span® 80 were used as edge activators and ibuprofen sodium salt (IBU) was selected as the model drug. After the initial screening of the IBU solubility in aqueous media, a BBD protocol was implemented, and the optimized formulation displayed appropriate physicochemical properties for skin delivery. By comparing the optimized transfersomes to equivalent liposomes, the incorporation of mixed edge activators was found to be beneficial to upgrade the storage stability of the nanosystems. Furthermore, their cytocompatibility was shown by cell viability studies using 3D HaCaT cultures. Altogether, the data herein bode well for future advances in the use of mixed edge activators in transfersomes for the management of skin conditions.

2.
Biochim Biophys Acta Biomembr ; 1865(3): 184115, 2023 03.
Article in English | MEDLINE | ID: mdl-36603803

ABSTRACT

There is a growing need for alternatives to target and treat bacterial infection. Thus, the present work aims to develop and optimize the production of PEGylated magnetoliposomes (MLPs@PEG), by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within fusogenic liposomes. A Box-Behnken design was applied to modulate size distribution variables, using lipid concentration, SPIONs amount and ultrasonication time as independent variables. As a result of the optimization, it was possible to obtain MLPs@PEG with a mean size of 182 nm, with polydispersity index (PDI) of 0.19, and SPIONs encapsulation efficiency (%EE) around 76%. Cytocompatibility assays showed that no toxicity was observed in fibroblasts, for iron concentrations up to 400µg/ml. Also, for safe lipid and iron concentrations, no hemolytic effect was detected. The fusogenicity of the nanosystems was first evaluated through lipid mixing assays, based on Förster resonance energy transfer (FRET), using liposomal membrane models, mimicking bacterial cytoplasmic membrane and eukaryotic plasma membrane. It was shown that the hybrid nanosystems preferentially interact with the bacterial membrane model. Confocal microscopy and fluorescence lifetime measurements, using giant unilamellar vesicles (GUVs), validated these results. Overall, the developed hybrid nanosystem may represent an efficient drug delivery system with improved targetability for bacterial membrane.


Subject(s)
Drug Delivery Systems , Unilamellar Liposomes , Iron , Lipids
3.
Biology (Basel) ; 13(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38275722

ABSTRACT

Although the discovery of the Golgi apparatus (GA) was made over 125 years ago, only a very limited number of therapeutic approaches have been developed to target this complex organelle. The GA serves as a modification and transport center for proteins and lipids and also has more recently emerged as an important store for some ions. The dysregulation of GA functions is implicated in many cellular processes associated with cancer and some GA proteins are indeed described as cancer biomarkers. This dysregulation can affect protein modification, localization, and secretion, but also cellular metabolism, redox status, extracellular pH, and the extracellular matrix structure. Consequently, it can directly or indirectly affect cancer progression. For these reasons, the GA is an appealing anticancer pharmacological target. Despite this, no anticancer drug specifically targeting the GA has reached the clinic and few have entered the clinical trial stage. Advances in nanodelivery approaches may help change this scenario by specifically targeting tumor cells and/or the GA through passive, active, or physical strategies. This article aims to examine the currently available anticancer GA-targeted drugs and the nanodelivery strategies explored for their administration. The potential benefits and challenges of modulating and specifically targeting the GA function in the context of cancer therapy are discussed.

4.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458004

ABSTRACT

There has been an increasing interest in using nanomaterials to develop innovative delivery systems [...].

5.
Nanomaterials (Basel) ; 12(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055292

ABSTRACT

The human epidermis has a characteristic lipidic composition in the stratum corneum, where ceramides play a crucial role in the skin barrier homeostasis and in water-holding capacity. Several skin diseases, such as atopic dermatitis and psoriasis, exhibit a dysfunction in the lipid barrier with altered ceramide levels and increased loss of transepidermal water. Glucocorticoids are normally employed in the therapeutical management of these pathologies. However, they have shown a poor safety profile and reduced treatment efficiency. The main objective of this review is to, within the framework of the limitations of the currently available therapeutical approaches, establish the relevance of nanocarriers as a safe and efficient delivery strategy for glucocorticoids and ceramides in the topical treatment of skin disorders with barrier impairment.

6.
Foods ; 10(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064868

ABSTRACT

Kefir, a traditional fermented food, has numerous health benefits due to its unique chemical composition, which is reflected in its excellent nutritional value. Physicochemical and microbial composition of kefir obtained from fermented milk are influenced by the type of the milk, grain to milk ratio, time and temperature of fermentation, and storage conditions. It is crucial that kefir characteristics are maintained during storage since continuous metabolic activities of residual kefir microbiota may occur. This study aimed to examine the nutritional profile of kefir produced in traditional in use conditions by fermentation of ultra-high temperature pasteurized (UHT) semi-skimmed cow milk using argentinean kefir grains and compare the stability and nutritional compliance of freshly made and refrigerated kefir. Results indicate that kefir produced under home use conditions maintains the expected characteristics with respect to the physicochemical parameters and composition, both after fermentation and after refrigerated storage. This work further contributes to the characterization of this food product that is so widely consumed around the world by focusing on kefir that was produced in a typical household setting.

7.
J Med Chem ; 64(8): 5171-5184, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33847502

ABSTRACT

Omeprazole is usually administered under an enteric coating. However, there is a Food and Drug Administration-approved strategy that enables its release in the stomach. When locally absorbed, omeprazole shows a higher efficacy and a cytoprotective effect, whose mechanism was still unknown. Therefore, we aimed to assess the effect of the absorption route on the gastric mucosa. 2D and 3D models of dipalmitoylphosphatidylcholine (DPPC) at different pH values (5.0 and 7.4) were used to mimic different absorption conditions. Several experimental techniques, namely, fluorescence studies, X-ray scattering methodologies, and Langmuir monolayers coupled with microscopy, X-ray diffraction, and infrared spectroscopy techniques, were combined with molecular dynamics simulations. The results showed that electrostatic and hydrophobic interactions between omeprazole and DPPC rearranged the conformational state of DPPC. Omeprazole intercalates among DPPC molecules, promoting domain formation with untilted phospholipids. Hence, the local release of omeprazole enables its action as a phospholipid-like drug, which can reinforce and protect the gastric mucosa.


Subject(s)
Drug Compounding , Omeprazole/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Drug Liberation , Fluorescence Polarization , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Omeprazole/chemistry , Phase Transition , Scattering, Small Angle , Static Electricity , X-Ray Diffraction
8.
J Mol Biol ; 433(9): 166911, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33676927

ABSTRACT

Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Cell Membrane/metabolism , Ciprofloxacin/chemistry , Ciprofloxacin/metabolism , Copper/metabolism , Diffusion , Gram-Positive Bacteria , Cardiolipins/metabolism , Cell Membrane/chemistry , Copper/chemistry , Drug Resistance, Multiple, Bacterial , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/cytology , Gram-Positive Bacteria/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Phosphatidylglycerols/metabolism , Protons , Thermodynamics
9.
Nanomaterials (Basel) ; 12(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009956

ABSTRACT

Ionic liquids (ILs) have increasingly been studied as key materials to upgrade the performance of many pharmaceutical formulations. In controlled delivery systems, ILs have improved multiple physicochemical properties, showing the relevance of continuing to study their incorporation into these formulations. Transfersomes are biocompatible nanovesicular systems, quite useful in controlled delivery. They have promising characteristics, such as elasticity and deformability, making them suitable for cutaneous delivery. Nonetheless, their overall properties and performance may still be improved. Herein, new TransfersomILs systems to load rutin were developed and the physicochemical properties of the formulations were assessed. These systems were prepared based on an optimized formulation obtained from a Box-Behnken factorial design (BBD). The impact of imidazole-based ILs, cholinium-based ILs, and their combinations on the cell viability of HaCaT cells and on the solubility of rutin was initially assessed. The newly developed TransfersomILs containing rutin presented a smaller size and, in general, a higher association efficiency, loading capacity, and total amount of drug release compared to the formulation without IL. The ILs also promoted the colloidal stability of the vesicles, upgrading storage stability. Thus, ILs were a bridge to develop new TransfersomILs systems with an overall improved performance.

10.
Mol Pharmacol ; 97(4): 295-303, 2020 04.
Article in English | MEDLINE | ID: mdl-32102968

ABSTRACT

The main objective of this study was to clarify the topical mechanisms underlying diclofenac-induced gastric toxicity by considering for the first time both ionization states of this nonsteroidal anti-inflammatory drug. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes were the model system chosen to mimic the protective phospholipid layers of the gastric mucosa and to describe the interactions with diclofenac, considering the pH gradient found in the gastric mucosa (3 < pH < 7.4). Complementary experimental techniques were combined to evaluate the drug's affinity for DMPC bilayers, as well as to assess the drug's effects on the structural properties of the phospholipid bilayer. The diclofenac-DMPC interactions were clearly dependent on the drug's ionization state. Neutral diclofenac displayed greater affinity for DMPC bilayers than anionic diclofenac. Moreover, the protonated/neutral form of the drug induced more pronounced and/or distinct alterations in the structure of the DMPC bilayer than the deprotonated/ionized form, considering similar membrane concentrations. Therefore, neutral diclofenac-induced changes in the structural properties of the external phospholipid layers of the gastric mucosa may constitute an additional toxicity mechanism of this worldwide-used drug, which shall be considered for the development of safer therapeutic strategies. SIGNIFICANCE STATEMENT: Neutral or anionic diclofenac exerted distinct alterations in phosphatidylcholine bilayers, which are used in this work as models for the protective phospholipid layers of the gastric mucosa. Remarkable changes were induced by neutral diclofenac in the structural properties of the phospholipid bilayer, suggesting that both ionized and neutral states of nonsteroidal anti-inflammatory drugs must be considered to clarify their mechanisms of toxicity and to ultimately develop safer anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/toxicity , Diclofenac/toxicity , Dimyristoylphosphatidylcholine/chemistry , Gastric Mucosa/drug effects , Lipid Bilayers/chemistry , Gastric Mucosa/chemistry , Hydrogen-Ion Concentration , Liposomes/chemistry , Molecular Structure , Scattering, Small Angle , X-Ray Diffraction
11.
Membranes (Basel) ; 11(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383697

ABSTRACT

Cardiovascular (CV) toxicity is nowadays recognized as a class effect of non-aspirin nonsteroidal anti-inflammatory drugs (NSAIDs). However, their mechanisms of cardiotoxicity are not yet well understood, since different compounds with similar action mechanisms exhibit distinct cardiotoxicity. For instance, diclofenac (DIC) is among the most cardiotoxic compounds, while naproxen (NAP) is associated with low CV risk. In this sense, this study aimed to unravel the role of drug-lipid interactions in NSAIDs-induced cardiotoxicity. For that, DIC and NAP interactions with lipid bilayers as model systems of cell and mitochondrial membranes were characterized by derivative spectrophotometry, fluorometric leakage assays, and synchrotron X-ray scattering. Both DIC and NAP were found to have the ability to permeabilize the membrane models, as well as to alter the bilayers' structure. The NSAIDs-induced modifications were dependent on the lipid composition of the membrane model, the three-dimensional structure of the drug, as well as the drug:lipid molar ratio tested. Altogether, this work supports the hypothesis that NSAIDs-lipid interactions, in particular at the mitochondrial level, may be another key step among the mechanisms underlying NSAIDs-induced cardiotoxicity.

12.
Molecules ; 24(3)2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30709010

ABSTRACT

(1) Background: Membrane lipids have been disregarded in drug development throughout the years. Recently, they gained attention in drug design as targets, but they are still disregarded in the latter stages. Thus, this study aims to highlight the relevance of considering membrane lipids in the preclinical phase of drug development. (2) Methods: The interactions of a drug candidate for clinical use (licofelone) with a membrane model system made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated by combining Langmuir isotherms, Brewster angle microscopy (BAM), polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and grazing-incidence X-ray diffraction (GIXD) measurements. (3) Results: Licofelone caused the expansion of the DPPC isotherm without changing the lipid phase transition profile. Moreover, licofelone induced the reduction of DPPC packing density, while increasing the local order of the DPPC acyl chains. (4) Conclusions: The licofelone-induced alterations in the structural organization of phosphatidylcholine monolayers may be related to its pharmacological actions. Thus, the combination of studying drug-membrane interactions with the pharmacological characterization that occurs in the preclinical stage may gather additional information about the mechanisms of action and toxicity of drug candidates. Ultimately, the addition of this innovative step shall improve the success rate of drug development.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Pyrroles/chemistry , Drug Development , Membrane Lipids/chemistry , Microscopy , Molecular Structure , Spectrum Analysis , Temperature
13.
Article in English | MEDLINE | ID: mdl-29849720

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: This study aims to evaluate the versatility of these species and their agreement of use and/or the informants' knowledge and verify the variability of the information on the indicated medicinal species in comparison to other species from northeastern Brazilian areas. MATERIALS AND METHODS: Ethnobotanical information was acquired through interviews with 23 residents of the Quincuncá community, northeastern Brazil. From the obtained data, a comparative analysis of the therapeutic indications with other 40 areas in different biomes was conducted. For that, the relative importance index and informant consensus factor were calculated and compared to other indices evaluated in the literature. RESULTS: A total of 39 medicinal species were cited and twenty-six species showed similarities among their therapeutic indications; however, species as Geoffroea spinosa, Lantana camara, and others can be highlighted, present in community disease indications that were not verified for other areas. Myracrodruon urundeuva, Mimosa tenuiflora, Stryphnodendron rotundifolium, and Amburana cearensis had the greatest versatility. In the Quincuncá community, medicinal species were indicated for 49 diseases, which were grouped into 15 categories of body systems. CONCLUSION: This study shows the presented divergence in relation to their therapeutic use; in this point, these divergences reinforce the importance of pharmacological research.

14.
Colloids Surf B Biointerfaces ; 169: 375-383, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29803153

ABSTRACT

Nitric oxide (NO)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) have been developed to overcome the gastrointestinal and cardiovascular toxicity of NSAIDs, by chemically associating a NO-releasing moiety with commercial NSAIDs. Since increasing evidence supports that NSAIDs toxicity is related to their topical actions in membrane lipids, this work aims to evaluate the impact of adding a NO-releasing moiety to parent NSAIDs regarding their effect on lipid bilayers. Thus, the interactions of NO-indomethacin and indomethacin (parent drug) with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers were described herein at pH 3.0 and 7.4. Diverse experimental techniques were combined to characterize the partitioning and location of drugs in DMPC bilayers, and to analyze their effect on the lipid phase transition and the bilayer structure and dynamics. The partitioning of NO-indomethacin into DMPC bilayers was similar to that of charged indomethacin and smaller than that of neutral indomethacin. Both drugs were found to insert the DMPC bilayer and the membrane location of indomethacin was pH-dependent. NO-indomethacin and indomethacin induced a decrease of the main phase transition temperature of DMPC. The effect of these drugs on the bilayer structure and dynamics was dependent on diverse factors, namely drug ionization state, drug:lipid molar ratio, temperature and lipid phase. It is noteworthy that NO-indomethacin induced more pronounced alterations in the biophysical properties of DMPC bilayers than indomethacin, considering equivalent membrane concentrations. Such modifications may have in vivo implications, particularly in the gastric mucosa, where NO-NSAIDs-induced changes in the protective properties of phospholipid layers may contribute to the occurrence of adverse effects.


Subject(s)
Gastric Mucosa/drug effects , Indomethacin/pharmacology , Lipid Bilayers/chemistry , Nitric Oxide/pharmacology , Phospholipids/chemistry , Humans , Hydrogen-Ion Concentration , Indomethacin/administration & dosage , Indomethacin/chemistry , Molecular Structure , Nitric Oxide/administration & dosage , Nitric Oxide/chemistry , Particle Size , Surface Properties
15.
Phys Chem Chem Phys ; 20(21): 14398-14409, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29770409

ABSTRACT

Gastrointestinal (GI) toxicity is a major drawback of the chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs). The NSAIDs topical actions on the protective phospholipid layers of the GI mucosa seem to be a central toxicity mechanism of these pharmaceuticals. This work describes the interactions of acemetacin, a commercialized NSAID, with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at pH 3.0, 5.0, and 7.4. This pH range was chosen to mimic the pH gradient found in the gastric mucosa, and to ultimately gain insights into the mechanisms underlying the acemetacin-induced gastric toxicity. Various experimental techniques were combined to characterize the partitioning of acemetacin in DMPC bilayers, and its effects on the phase transition behavior, as well as the structure and dynamics of DMPC bilayers. The acemetacin-DMPC interactions were clearly pH-dependent. The neutral (protonated) form of acemetacin had more affinity for the DMPC bilayer than the negatively charged form. Due to the higher affinity of neutral acemetacin, the drug effects on the phase transition and the structure and dynamics of the DMPC bilayer were more pronounced at lower pH values. In general, acemetacin decreased the temperature and the cooperativity of the lipid phase transition and induced changes in the packing and dynamics of the DMPC bilayer. These results support the hypothesis that acemetacin-induced gastric toxicity may be related to its effects on the protective phospholipid layers of the mucosal barrier.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Indomethacin/analogs & derivatives , Phosphatidylcholines/chemistry , Hydrogen-Ion Concentration , Indomethacin/chemistry , Kinetics , Lipid Bilayers/chemistry , Molecular Structure , Phase Transition , Static Electricity , Temperature
16.
Med Res Rev ; 37(4): 802-859, 2017 07.
Article in English | MEDLINE | ID: mdl-28005273

ABSTRACT

The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Animals , Humans , Structure-Activity Relationship
17.
Prog Lipid Res ; 52(4): 571-84, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23981364

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world due to their anti-inflammatory, analgesic and antipyretic properties. Nevertheless, the consumption of these drugs is still associated with the occurrence of a wide spectrum of adverse effects. Regarding the major role of membranes in cellular events, the hypothesis that the biological actions of NSAIDs may be related to their effect at the membrane level has triggered the in vitro assessment of NSAIDs-membrane interactions. The use of membrane mimetic models, cell cultures, a wide range of experimental techniques and molecular dynamics simulations has been providing significant information about drugs partition and location within membranes and also about their effect on diverse membrane properties. These studies have indeed been providing evidences that the effect of NSAIDs at membrane level may be an additional mechanism of action and toxicity of NSAIDs. In fact, the pharmacokinetic properties of NSAIDs are closely related to the ability of these drugs to interact and overcome biological membranes. Moreover, the therapeutic actions of NSAIDs may also result from the indirect inhibition of cyclooxygenase due to the disturbing effect of NSAIDs on membrane properties. Furthermore, increasing evidences suggest that the disordering effects of these drugs on membranes may be in the basis of the NSAIDs-induced toxicity in diverse organ systems. Overall, the study of NSAIDs-membrane interactions has proved to be not only important for the better understanding of their pharmacological actions, but also for the rational development of new approaches to overcome NSAIDs adverse effects.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cell Membrane/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Cell Membrane/chemistry , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Dynamics Simulation , Prostaglandin-Endoperoxide Synthases/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
18.
Chemphyschem ; 14(12): 2808-16, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23821530

ABSTRACT

This work focuses on the influence of rifabutin and two novel analogs, namely, N'-acetyl-rifabutin and N'-butanoyl-rifabutin, on the biophysical properties of lipid membranes. Monolayers and multilamellar vesicles composed of egg L-α-phosphatidylcholine:cholesterol in a molar ratio of 4:1 are chosen to mimic biological membranes. Several accurate biophysical techniques are used to establish a putative relationship between the chemical structure of the antimycobacterial compounds and their activity on the membranes. A combination of in situ experimental techniques, such as Langmuir isotherms, Brewster angle microscopy, polarization-modulated infrared reflection-absorption spectroscopy, and small-angle X-ray scattering, is used to assess the drug-membrane interaction. A relationship between the effect of a drug on the organization of the membranes and their chemical structure is found and may be useful in the development of new drugs with higher efficacy and fewer toxic effects.


Subject(s)
Membranes, Artificial , Rifabutin/analogs & derivatives , Anti-Bacterial Agents/chemistry , Cholesterol/chemistry , Elastic Modulus , Phosphatidylcholines/chemistry , Scattering, Small Angle , Structure-Activity Relationship , X-Ray Diffraction
19.
Pharm Res ; 30(8): 2097-107, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23703372

ABSTRACT

PURPOSE: To study interactions between nonsteroidal anti-inflammatory drugs (NSAIDs) and membrane mimetic models. METHODS: The interactions of indomethacin and nimesulide with liposomes of dipalmitoylphosphatidylcholine (DPPC) at two physiological pH conditions (pH 7.4 and 5.0) were investigated by time-resolved and steady-state fluorescence techniques and derivative ultraviolet/visible absorption spectrophotometry. Fluorescence quenching studies that assess the location of the drugs interacting with the membrane were carried out using labeled liposomes with trimethylammonium-diphenylhexatriene (TMA-DPH), a fluorescent probe with well-known membrane localization. Partition of the drugs within membranes was determined by calculating their partition coefficients (K p ) between liposomes and water using derivative ultraviolet/visible absorption spectrophotometry in a temperature range of 37-50°C. The Van't Hoff analysis of the temperature dependence of K p values allowed calculating the membrane-water variation of enthalpy (ΔH w→m) and entropy (ΔS w→m) and consequently the Gibbs free energy (ΔG w→m). RESULTS: Results indicate that quenching, partitioning and thermodynamic parameters inherent to the interaction of the studied drugs with the membrane mimetic model are deeply dependent on the initial organization of the membrane, on the pH medium and on the physical properties of the drug. CONCLUSIONS: The interactions between NSAIDs and membranes are manifested as changes in the physical and thermodynamic properties of the bilayers. Depending on the composition and physical state of the membrane and the chemical structure of the NSAID, the interaction can support or prevent drug activity or toxicity.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/metabolism , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Indomethacin/metabolism , Liposomes/metabolism , Sulfonamides/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Membrane/chemistry , Cell Membrane/metabolism , Indomethacin/chemistry , Indomethacin/pharmacology , Liposomes/chemistry , Spectrometry, Fluorescence , Sulfonamides/chemistry , Sulfonamides/pharmacology , Thermodynamics
20.
Eur J Pharm Biopharm ; 84(1): 183-91, 2013 May.
Article in English | MEDLINE | ID: mdl-23291047

ABSTRACT

The interaction of propranolol and acebutolol with biological membranes was assessed in the present work by using a range of biophysical techniques and liposomes, as membrane mimetic models. Liposomes were made of zwitterionic phosphatidylcholines and experiments were performed at physiologic pH and at various membrane physical states (gel, ripple and fluid phases). Fluorescence techniques were used to study the partition coefficient of ß-blockers, the influence of drugs on membrane fluidity and the drugs-membrane binding. Moreover, small and wide angle X-ray scattering techniques were used to evaluate the ß-blockers effect on long range bilayer order and hydrocarbon chain packing. The gathered results highlighted the importance of electrostatic interactions between propranolol and acebutolol with membranes. Furthermore, both ß-blockers exhibited a membrane-fluidizing effect and the capacity to disturb the membrane organization. In general, propranolol unveiled a more pronounced effect on membrane fluidity and structure than acebutolol. In the current study, the obtained results were also correlated with the cardioprotective properties of the ß-blockers studied.


Subject(s)
Acebutolol/metabolism , Adrenergic beta-Antagonists/metabolism , Membranes, Artificial , Propranolol/metabolism , Acebutolol/chemistry , Adrenergic beta-Antagonists/chemistry , Biophysical Phenomena/drug effects , Biophysical Phenomena/physiology , Cell Membrane , Liposomes , Propranolol/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...