Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7854, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030615

ABSTRACT

Spaceflight-induced changes in astronaut telomeres have garnered significant attention in recent years. While plants represent an essential component of future long-duration space travel, the impacts of spaceflight on plant telomeres and telomerase have not been examined. Here we report on the telomere dynamics of Arabidopsis thaliana grown aboard the International Space Station. We observe no changes in telomere length in space-flown Arabidopsis seedlings, despite a dramatic increase in telomerase activity (up to 150-fold in roots), as well as elevated genome oxidation. Ground-based follow up studies provide further evidence that telomerase is induced by different environmental stressors, but its activity is uncoupled from telomere length. Supporting this conclusion, genetically engineered super-telomerase lines with enhanced telomerase activity maintain wildtype telomere length. Finally, genome oxidation is inversely correlated with telomerase activity levels. We propose a redox protective capacity for Arabidopsis telomerase that may promote survivability in harsh environments.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Telomerase , Telomere Homeostasis , Arabidopsis/metabolism , Telomerase/genetics , Telomerase/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Telomere-Binding Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Plants/metabolism
2.
NPJ Microgravity ; 9(1): 21, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941263

ABSTRACT

Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.

3.
Planta ; 257(2): 46, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36695941

ABSTRACT

MAIN CONCLUSION: The IPK1 genes, which code for 2-kinases that can synthesize Ins(1,2,4,5,6)P5 from Ins(1,4,5,6)P4, are expressed throughout cotton plants, resulting in the highest Ins(1,2,4,5,6)P5 concentrations in young leaves and flower buds. Cotton leaves contain large amounts of Ins(1,2,4,5,6)P5 and InsP6 compared to plants not in the Malvaceae family. The inositol polyphosphate pathway has been linked to stress tolerance in numerous plant species. Accordingly, we sought to determine why cotton and other Malvaceae have such high levels of these inositol phosphates. We have quantified the levels of InsP5 and InsP6 in different tissues of cotton plants and determined the expression of IPK1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene) in vegetative and reproductive tissues. Gossypium hirsutum was found to contain four IPK1 genes that were grouped into two pair (AB, CD) where each pair consists of very similar sequences that were measured together. More IPK1AB is expressed in leaves than in roots, whereas more IPK1CD is expressed in roots than in leaves. Leaves and flower buds have more InsP5 and InsP6 than stems and roots. Leaves and roots contain more InsP5 than InsP6, whereas flower buds and stems contain more InsP6 than InsP5. Dark-grown seedlings contain more InsP5 and InsP6 than those grown under lights, and the ratio of InsP5 to InsP6 is greater in the light-grown seedlings. During 35 days of the life cycle of the third true leaf, InsP5 and InsP6 gradually decreased by more than 50%. Silencing IPK1AB and IPK1CD with Cotton Leaf Crumple Virus-induced gene silencing (VIGS) resulted in plants with an intense viral phenotype, reduced IPK1AB expression and lowered amounts of InsP5. The results are consistent with Ins(1,2,4,5,6)P5 synthesis from Ins(1,4,5,6)P4 by IPK1. This study detailed the central role of IPK1 in cotton inositol polyphosphate metabolism, which has potential to be harnessed to improve the resistance of plants to different kinds of stress.


Subject(s)
Gossypium , Phytic Acid , Phytic Acid/metabolism , Gossypium/genetics , Gossypium/metabolism , Inositol Phosphates/metabolism , Inositol Phosphates/pharmacology
4.
Front Plant Sci ; 14: 1308713, 2023.
Article in English | MEDLINE | ID: mdl-38259952

ABSTRACT

Introduction: Understanding how plants adapt to the space environment is essential, as plants will be a valuable component of long duration space missions. Several spaceflight experiments have focused on transcriptional profiling as a means of understanding plant adaptation to microgravity. However, there is limited overlap between results from different experiments. Differences in experimental conditions and hardware make it difficult to find a consistent response across experiments and to distinguish the primary effects of microgravity from other spaceflight effects. Methods: Plant Signaling (PS) and Plant RNA Regulation (PRR) were two separate spaceflight experiments conducted on the International Space Station utilizing the European Modular Cultivation System (EMCS). The EMCS provided a lighted environment for plant growth with centrifugal capabilities providing an onboard 1 g control. Results and discussion: An RNA-Seq analysis of shoot samples from PS and PRR revealed a significant overlap of genes differentially expressed in microgravity between the two experiments. Relative to onboard 1 g controls, genes involved in transcriptional regulation, shoot development, and response to auxin and light were upregulated in microgravity in both experiments. Conversely, genes involved in defense response, abiotic stress, Ca++ signaling, and cell wall modification were commonly downregulated in both datasets. The downregulation of stress responses in microgravity in these two experiments is interesting as these pathways have been previously observed as upregulated in spaceflight compared to ground controls. Similarly, we have observed many stress response genes to be upregulated in the 1 g onboard control compared to ground reference controls; however these genes were specifically downregulated in microgravity. In addition, we analyzed the sRNA landscape of the 1 g and microgravity (µ g) shoot samples from PRR. We identified three miRNAs (miR319c, miR398b, and miR8683) which were upregulated in microgravity, while several of their corresponding target genes were found to be downregulated in microgravity. Interestingly, the downregulated target genes are enriched in those encoding chloroplast-localized enzymes and proteins. These results uncover microgravity unique transcriptional changes and highlight the validity and importance of an onboard 1 g control.

5.
Methods Mol Biol ; 2368: 301-319, 2022.
Article in English | MEDLINE | ID: mdl-34647263

ABSTRACT

Circadian rhythms are regular oscillations of an organism's physiology with a period of approximately 24 h. In the model plant Arabidopsis thaliana, circadian rhythms regulate a suite of physiological processes, including transcription, photosynthesis, growth, and flowering. The circadian clock and external rhythmic factors have extensive control of the underlying biochemistry and physiology. Therefore, it is critical to consider the time of day when performing gravitropism experiments, even if the circadian clock is not a focus of study. We describe the critical factors and methods to be considered and methods to investigate the possible circadian regulation of gravitropic responses.


Subject(s)
Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Rhythm , Gene Expression Regulation, Plant , Gravitropism , Photoperiod
6.
Life (Basel) ; 11(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34685382

ABSTRACT

Although many reports characterize the transcriptional response of Arabidopsis seedlings to microgravity, few investigate the effect of partial or fractional gravity on gene expression. Understanding plant responses to fractional gravity is relevant for plant growth on lunar and Martian surfaces. The plant signaling flight experiment utilized the European Modular Cultivation System (EMCS) onboard the International Space Station (ISS). The EMCS consisted of two rotors within a controlled chamber allowing for two experimental conditions, microgravity (stationary rotor) and simulated gravity in space. Seedlings were grown for 5 days under continuous light in seed cassettes. The arrangement of the seed cassettes within each experimental container results in a gradient of fractional g (in the spinning rotor). To investigate whether gene expression patterns are sensitive to fractional g, we carried out transcriptional profiling of root samples exposed to microgravity or partial g (ranging from 0.53 to 0.88 g). Data were analyzed using DESeq2 with fractional g as a continuous variable in the design model in order to query gene expression across the gravity continuum. We identified a subset of genes whose expression correlates with changes in fractional g. Interestingly, the most responsive genes include those encoding transcription factors, defense, and cell wall-related proteins and heat shock proteins.

7.
Metabolites ; 11(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34564416

ABSTRACT

Phosphate is a major plant macronutrient and low phosphate availability severely limits global crop productivity. In Arabidopsis, a key regulator of the transcriptional response to low phosphate, phosphate starvation response 1 (PHR1), is modulated by a class of signaling molecules called inositol pyrophosphates (PP-InsPs). Two closely related diphosphoinositol pentakisphosphate enzymes (AtVIP1 and AtVIP2) are responsible for the synthesis and turnover of InsP8, the most implicated molecule. This study is focused on characterizing Arabidopsis vip1/vip2 double mutants and their response to low phosphate. We present evidence that both local and systemic responses to phosphate limitation are dampened in the vip1/vip2 mutants as compared to wild-type plants. Specifically, we demonstrate that under Pi-limiting conditions, the vip1/vip2 mutants have shorter root hairs and lateral roots, less accumulation of anthocyanin and less accumulation of sulfolipids and galactolipids. However, phosphate starvation response (PSR) gene expression is unaffected. Interestingly, many of these phenotypes are opposite to those exhibited by other mutants with defects in the PP-InsP synthesis pathway. Our results provide insight on the nexus between inositol phosphates and pyrophosphates involved in complex regulatory mechanisms underpinning phosphate homeostasis in plants.

8.
iScience ; 24(4): 102361, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33870146

ABSTRACT

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

9.
Methods Mol Biol ; 1309: 91-117, 2015.
Article in English | MEDLINE | ID: mdl-25981771

ABSTRACT

Plant transcriptional responses to gravity stimulation by reorientation are among the fastest measured in any tissue or species. Upon reorientation, changes in abundance of specific mRNAs can be measured within seconds or minutes, for plastid or nuclear encoded genes, respectively. Identifying fast gravity-induced transcripts has been made possible by the development of high-throughput technology for qualitative and quantitative RNA analysis. RNA profiling has undergone further rapid development due to its enormous potential in basic sciences and medical applications. We describe here the current and most widely used methods to profile the changes in an entire transcriptome by high-throughput sequencing of RNA fractions (RNAseq) and single gene transcript analysis using real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR).


Subject(s)
Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , RNA/genetics , Seeds/genetics , Gene Expression Regulation, Plant , Gravity Sensing/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Seeds/growth & development , Transcriptome/genetics
10.
Front Plant Sci ; 6: 67, 2015.
Article in English | MEDLINE | ID: mdl-25729385

ABSTRACT

Inositol phosphates (InsPs) are intricately tied to lipid signaling, as at least one portion of the inositol phosphate signaling pool is derived from hydrolysis of the lipid precursor, phosphatidyl inositol (4,5) bisphosphate. The focus of this review is on the inositol pyrophosphates, which are a novel group of InsP signaling molecules containing diphosphate or triphosphate chains (i.e., PPx) attached to the inositol ring. These PPx-InsPs are emerging as critical players in the integration of cellular metabolism and stress signaling in non-plant eukaryotes. Most eukaryotes synthesize the precursor molecule, myo-inositol (1,2,3,4,5,6)-hexakisphosphate (InsP6), which can serve as a signaling molecule or as storage compound of inositol, phosphorus, and minerals (referred to as phytic acid). Even though plants produce huge amounts of precursor InsP6 in seeds, almost no attention has been paid to whether PPx-InsPs exist in plants, and if so, what roles these molecules play. Recent work has delineated that Arabidopsis has two genes capable of PP-InsP5 synthesis, and PPx-InsPs have been detected across the plant kingdom. This review will detail the known roles of PPx-InsPs in yeast and animal systems, and provide a description of recent data on the synthesis and accumulation of these novel molecules in plants, and potential roles in signaling.

11.
Plants (Basel) ; 4(2): 267-83, 2015 May 29.
Article in English | MEDLINE | ID: mdl-27135328

ABSTRACT

Methods used to quantify inositol phosphates in seeds lack the sensitivity and specificity necessary to accurately detect the lower concentrations of these compounds contained in the leaves of many plants. In order to measure inositol hexakisphosphate (InsP6) and inositol pentakisphosphate (InsP5) levels in leaves of different plants, a method was developed to concentrate and pre-purify these compounds prior to analysis. Inositol phosphates were extracted from leaves with diluted HCl and concentrated on small anion exchange columns. Reversed-phase solid phase extraction cartridges were used to remove compounds that give peaks that sometimes interfere during HPLC. The method permitted the determination of InsP6 and InsP5 concentrations in leaves as low as 10 µM and 2 µM, respectively. Most plants analyzed contained a high ratio of InsP6 to InsP5. In contrast, certain members of the Malvaceae family, such as cotton (Gossypium) and some hibiscus (Hibiscus) species, had a preponderance of InsP5. Radiolabeling of cotton seedlings also showed increased amounts of InsP5 relative to InsP6. Why some Malvaceae species exhibit a reversal of the typical ratios of these inositol phosphates is an intriguing question for future research.

12.
Planta ; 241(3): 741-55, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25486887

ABSTRACT

MAIN CONCLUSION: Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 µm s(-1), while in the controls only by 3-4 µm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.


Subject(s)
Aquaporins/metabolism , Phosphatidylinositols/metabolism , Water/metabolism , Cell Membrane Permeability , Cells, Cultured , Cytosol/metabolism , Hydrogen-Ion Concentration , Protoplasts , Nicotiana
13.
Plant J ; 80(4): 642-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25231822

ABSTRACT

Inositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo-inositol hexakisphosphate (InsP6 ). Here, we report that Arabidopsis and maize InsP6 transporter mutants have elevated levels of inositol pyrophosphates in their seed, providing unequivocal identification of their presence in plant tissues. We also show that plant seeds store a little over 1% of their inositol phosphate pool as InsP7 and InsP8 . Many tissues, including, seed, seedlings, roots and leaves accumulate InsP7 and InsP8 , thus synthesis is not confined to tissues with high InsP6 . We have identified two highly similar Arabidopsis genes, AtVip1 and AtVip2, which are orthologous to the yeast and mammalian VIP kinases. Both AtVip1 and AtVip2 encode proteins capable of restoring InsP7 synthesis in yeast mutants, thus AtVip1 and AtVip2 can function as bonafide InsP6 kinases. AtVip1 and AtVip2 are differentially expressed in plant tissues, suggesting non-redundant or non-overlapping functions in plants. These results contribute to our knowledge of inositol phosphate metabolism and will lay a foundation for understanding the role of InsP7 and InsP8 in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Inositol Phosphates/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Seeds/metabolism , Transcription Factors, General/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatography, High Pressure Liquid , Genetic Complementation Test , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors, General/genetics , Yeasts/genetics , Zea mays/genetics , Zea mays/metabolism
14.
Front Plant Sci ; 5: 267, 2014.
Article in English | MEDLINE | ID: mdl-24966862

ABSTRACT

The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca(2+)-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst) DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5, and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca(2+) release, modulates defense gene expression and compromises plant defense responses.

15.
Plant Cell ; 25(12): 4894-911, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24326589

ABSTRACT

The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)-green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A-induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.


Subject(s)
Arabidopsis/metabolism , Biological Transport , Clathrin-Coated Vesicles/physiology , Phosphatidylinositol 4,5-Diphosphate/physiology , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/analysis , Arabidopsis Proteins/metabolism , Cell Polarity , Endocytosis , Green Fluorescent Proteins/analysis , Indoleacetic Acids/metabolism , Membrane Transport Proteins/analysis , Membrane Transport Proteins/metabolism , Mutation , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/genetics
16.
Methods Mol Biol ; 1009: 33-41, 2013.
Article in English | MEDLINE | ID: mdl-23681521

ABSTRACT

The phosphoinositide signaling pathway is important for plant responses to many different stresses. As part of the responses to a stimulus, InsP3 levels may increase rapidly and transiently. The receptor binding assay for InsP3 described here is easy to use and an ideal method to monitor and compare InsP3 levels in multiple samples from large scale experiments. The method is based on competitive binding of InsP3 to the mammalian brain InsP3 specific receptor protein. This chapter describes a protocol for extracting and neutralizing plant samples and performing the receptor binding assay (using a commercially available kit). The protocol described has been used effectively to monitor InsP3 levels in plant tissues of different origin and in response to different stresses.


Subject(s)
Arabidopsis/metabolism , Binding, Competitive , Biological Assay/methods , Inositol 1,4,5-Trisphosphate/metabolism , Organ Specificity , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Protein Binding , Seedlings/metabolism , Tritium
17.
Methods Mol Biol ; 1009: 163-74, 2013.
Article in English | MEDLINE | ID: mdl-23681532

ABSTRACT

Inositol lipid kinases are perhaps the easiest and most straightforward enzymes in the phosphoinositide pathway to analyze. In addition to monitoring lipid kinase-specific activity, lipid kinase assays can be used to quantify the inositol lipids present in isolated membranes (Jones et al., Methods Mol Biol 462:75-88, 2009). The lipid kinase assays are based on the fact that the more negatively charged phosphorylated lipid products are readily separated from their lipid substrates by thin layer chromatography. We have summarized our current protocols and identified important considerations for working with inositol lipids including different methods for substrate delivery when using recombinant proteins.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Enzyme Assays/methods , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plants/enzymology
18.
Am J Bot ; 100(1): 153-60, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23258369

ABSTRACT

Gravitropism is a universal plant response. It is initiated by the sensing of the primary signal (mass or pressure), which is then converted into chemical signals that are transduced and propagated in a precise spatial and temporal fashion, resulting in a differential growth response. Our thesis is that membrane lipids and lipid-mediated signaling pathways play critical roles in the initial signaling and in the establishment of polarity. In this review, we highlight results from recent literature and discuss the major questions that remain unanswered.


Subject(s)
Gravitropism/physiology , Lipid Metabolism , Plants/metabolism , Signal Transduction , Indoleacetic Acids/metabolism , Phosphatidylinositols/metabolism
19.
Front Plant Sci ; 3: 50, 2012.
Article in English | MEDLINE | ID: mdl-22645589

ABSTRACT

Nuclear localized inositol phospholipids and inositol phosphates are important for regulating many essential processes in animal and yeast cells such as DNA replication, recombination, RNA processing, mRNA export and cell cycle progression. An overview of the current literature indicates the presence of a plant nuclear phosphoinositide (PI) pathway. Inositol phospholipids, inositol phosphates, and enzymes of the PI pathway have been identified in plant nuclei and are implicated in DNA replication, chromatin remodeling, stress responses and hormone signaling. In this review, the potential functions of the nuclear PI pathway in plants are discussed within the context of the animal and yeast literature. It is anticipated that future research will help shed light on the functional significance of the nuclear PI pathway in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...