ABSTRACT
Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.
El cambio climático es una emergencia medioambiental que amenaza a especies y ecosistemas en todo el mundo. Los océanos han absorbido alrededor del 90% del calor antropogénico y entre el 20% y el 30% de las emisiones de carbono, lo que ha provocado su calentamiento, acidificación, desoxigenación, cambios en la estratificación de los océanos y en la disponibilidad de nutrientes, así como fenómenos extremos más pronunciados. Dadas las predicciones de cambios, hay una importante necesidad de entender cómo las especies marinas se verán afectadas. En este estudio utilizamos una Evaluación Integrada de Riesgos para evaluar la vulnerabilidad de 132 condrictios del Pacífico Tropical Oriental (PTO) a los impactos del cambio climático. Adoptando un enfoque preventivo, estimamos que la vulnerabilidad general al cambio climático es Alta para casi una cuarta parte (23%) de las especies de condrictios del PTO evaluadas y Moderada para gran parte del resto (76%). La mayoría de las especies altamente vulnerables son batoideos (77%), y una gran proporción de éstas (90%) son especies costeras o especies pelágicas que utilizan los hábitats costeros como áreas de crianza. Seis especies de batoideos tuvieron una vulnerabilidad Alta en los tres componentes de la evaluación. Esta evaluación indica que las especies costeras, en particular las que dependen de áreas de crianza costeras, son las más vulnerables al cambio climático. Es probable que el calentamiento de los océanos, junto con la acidificación y la posible desoxigenación, tenga efectos generalizados sobre las especies de condrictios del PTO, pero las especies costeras se verán también afectadas por los cambios en los aportes de agua dulce, la salinidad y el aumento del nivel del mar. Esta vulnerabilidad relacionada con el clima se ve agravada por otros factores antropogénicos que ya se están produciendo en la región, como la sobrepesca y la degradación del hábitat. La mitigación de los impactos del cambio climático sobre los condrictios del PTO implica medidas que incluyan abordar la degradación del hábitat y la sostenibilidad de la explotación pesquera, y acciones para las especies de mayor riesgo son necesarias. Esta evaluación también destaca la necesidad de comprender mejor los impactos del cambio climático en los hábitats y procesos clave del PTO y las lagunas de conocimiento identificadas en relación con las especies de condrictios del PTO.
Subject(s)
Climate Change , Animals , Pacific Ocean , Risk Assessment , Ecosystem , Fishes/physiologyABSTRACT
Changes in life-history requirements drive trophic variations, particularly in large marine predators. The life history of many shark species is still poorly known and understanding their dietary ontogeny is a challenging task, especially for highly migratory species. Stable isotope analysis has proven as a useful method for examining the foraging strategies of sharks and other marine predators. We assessed the foraging strategies and ontogenetic changes of scalloped hammerhead sharks, Sphyrna lewini, at Galapagos Marine Reserve (GMR), by analysing δ13C and δ15N signatures in different maturity stages. Our isotopic results suggest ontogenetic shifts in resource use between sub-adult and adult stages, but not between adult and juvenile stages. Carbon isotopic signatures found in the juvenile stage were enriched in contrast to sub-adults (~0.73) suggesting a combination of the maternal input and the use of coastal resources around the Galapagos Islands. Adult female sharks also showed enrichment in δ13C (~0.53) in comparison to sub-adult stages that suggest feeding in high primary productivity areas, such as the GMR. This study improves the understanding of the trophic ecology and ontogenetic changes of a highly migratory shark that moves across the protected and unprotected waters of the Eastern Tropical Pacific.
Subject(s)
Sharks , Animals , Birds , Carbon Isotopes , Ecology/methods , Ecosystem , Female , Nitrogen Isotopes/analysisABSTRACT
This study aimed to determine whether the insemination site and dose with cryopreserved sperm of reproductively normal mares affect the sperm population in uterine tubes and the intensity of endometrial inflammatory response. Experimental subjects were estrous mares inseminated, in the mid-uterine body (Body) or the tip of the uterine horn (Tip), ipsilateral to the dominant follicle, with one 0.5 mL straw with 50 × 106 sperm (50) or with eight straws with 50 × 106 sperm/straw (400). Mares were slaughtered 2 h, 4 h and 12 h after artificial insemination (AI) and randomly assigned to following groups: Body 50 (n = 19) (2 h, 4 h or 12 h); Tip 50 (n = 29) (2 h, 4 h, or 12 h); Body 400 (n = 24) (2 h, 4 h, or 12 h); Tip 400 (n = 21) (2 h, 4 h, or 12 h). A Control group (n = 16) was not inseminated. After slaughter, uterine tubes were separated from uterus, and uteri and tubes flushed with phosphate-buffered saline (PBS). After flushing, an endometrial sample was collected from ipsilateral and contralateral horns and mid-uterus body for further histopathological examination. A sample of each uterine tube flushing was examined for sperm count, and a sample of each uterine flushing was used for polymorphonuclear neutrophils (PMNs) count. Data were analyzed using PROC GLM from SASv9.4. Insemination time, site, sperm dose, and their interactions were considered independent variables and sperm and PMNs numbers dependent variables. Deep horn insemination increased ipsilateral uterine tube sperm number without an increase in the inflammatory reaction compared with the uterine body insemination. The higher the insemination dose, the higher the uterine tubes' sperm number and inflammatory reaction, with a quicker resolution. In conclusion, the insemination site and dose affected sperm in the uterine tubes, while post-insemination time and dose influenced the inflammatory reaction.
Subject(s)
Insemination, Artificial , Sperm Transport , Animals , Cryopreservation/veterinary , Female , Horses , Insemination, Artificial/veterinary , Male , Sperm Count/veterinary , Spermatozoa , UterusABSTRACT
The discovery of deep-sea hydrothermal vents in 1977 challenged our views of ecosystem functioning and yet, the research conducted at these extreme and logistically challenging environments still continues to reveal unique biological processes. Here, we report for the first time, a unique behavior where the deep-sea skate, Bathyraja spinosissima, appears to be actively using the elevated temperature of a hydrothermal vent environment to naturally "incubate" developing egg-cases. We hypothesize that this behavior is directly targeted to accelerate embryo development time given that deep-sea skates have some of the longest egg incubation times reported for the animal kingdom. Similar egg incubating behavior, where eggs are incubated in volcanically heated nesting grounds, have been recorded in Cretaceous sauropod dinosaurs and the rare avian megapode. To our knowledge, this is the first time incubating behavior using a volcanic source is recorded for the marine environment.