Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Morphol ; 285(4): e21687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558429

ABSTRACT

The osteohistology of vertebrates provides a reliable source to deduce biological information, particularly regarding growth and development. Although osteohistological studies in Neosuchia (Crocodyliformes, Mesoeucrocodylia) are relatively numerous, the number of species studied within the group is still small. Extant crocodilians are known to exhibit intraspecific variability linked to environmental conditions, habitat, feeding, and other intrapopulation factors. Here, we analyzed the osteohistology of the living South American Caiman latirostris throughout posthatching ontogeny. The histology of several appendicular bones of 13 different-sized captive and wild individuals were examined. Although some thin sections revealed the classic lamellar, parallel-fibered, or woven bone matrices, others showed a variation and a mix between the organization of the bone tissue. These histological differences are likely related to variability in the growth dynamics of caimans. In some bones of the juveniles studied, remnants of embryonic bone were observed. Osteohistological variation related to prevailing environmental conditions is documented. Furthermore, our results show ontogenetic variation in the type of bone tissues deposited throughout the development of C. latirostris. This study offers a broad framework for life history interpretations for C. latirostris and provides insight into the evolutionary history and ontogenetic growth of extinct crocodylian lineages.


Subject(s)
Alligators and Crocodiles , Humans , Animals , Bone and Bones , Biological Evolution , Ecosystem , Growth and Development
2.
J Anat ; 244(5): 749-791, 2024 May.
Article in English | MEDLINE | ID: mdl-38104997

ABSTRACT

The anatomy of the archosaurian pelvis and hindlimb has adopted a diversity of successful configurations allowing a wide range of postures during the evolution of the group (e.g., erect, sprawling). For this reason, thorough studies of the structure and function of the pelvic and hindlimb musculature of crocodylians are required and provide the possibility to expand their implications for the evolution of archosaurian locomotion, as well as to identify potential new characters based on muscles and their bony correlates. In this study, we give a detailed description of the pelvic and hindlimb musculature of the South American alligator Caiman yacare, providing comprehensive novel information regarding lower limb and autopodial muscles. Particularly for the pedal muscles, we propose a new classification for the dorsal and ventral muscles of the autopodium based on the organisation of these muscles in successive layers. We have studied the myology in a global background in which we have compared the Caiman yacare musculature with other crocodylians. In this sense, differences in the arrangement of m. flexor tibialis internus 1, m. flexor tibialis externus, m. iliofibularis, mm. puboischiofemorales internii 1 and 2, between Ca. yacare and other crocodylians were found. We also discuss the muscle attachments that have different bony correlates among the crocodylian species and their morphological variation. Most of the correlates did not exhibit great variation among the species compared. The majority of the recognised correlates were identified in the pelvic girdle; additionally, some bony correlates associated with the pedal muscles are highlighted here for the first time. This research provides a wide framework for future studies on comparative anatomy and functional morphology, which could contribute to improving the character definition used in phylogenetic analyses and to understand the patterns of musculoskeletal hindlimb evolution.


Subject(s)
Alligators and Crocodiles , Animals , Alligators and Crocodiles/anatomy & histology , Phylogeny , Muscle, Skeletal/anatomy & histology , Lower Extremity , Hindlimb/anatomy & histology , Pelvis/anatomy & histology
3.
Anat Rec (Hoboken) ; 306(6): 1304-1322, 2023 06.
Article in English | MEDLINE | ID: mdl-36469456

ABSTRACT

This article presents a detailed comparative analysis of the bone microstructure of three extant species of South American turtles. The main histological characteristics of postcranial bones are identified, as well as the intraskeletal, ontogenetic and interspecific variation between aquatic and terrestrial species. For this purpose, thin sections of postcranial bones (seventh cervical vertebra, coracoid, scapula, humerus, radius, ulna, ischium, ilium, pubis, femur, tibia, and fibula) of juvenile and adult specimens of aquatic (Phrynops hilarii and Hydromedusa tectifera) and terrestrial (Chelonoidis chilensis) turtles were analyzed. Bone histology revealed an intraskeletal variation of the microanatomical and microstructural organization in these turtles. The cortical bone is composed of poorly vascularized lamellar and parallel-fibered bone tissue interrupted with lines of arrested growth (LAGs), reflecting a cyclical slow growth rate throughout these turtles' life. Although in the adult specimens a growth rate decrease was observed, none of them have reached somatic maturity. The juvenile and the adult of Chelonoidis chilensis, unlike the aquatic species studied, presented a higher vascularization in their bones, which could imply a faster growth rate in this land specie. The number of LAGs was higher in the stylopodial and zeugopodial bones, which would make these elements suitable for approximate age estimations. Pectoral and pelvic girdle bones also exhibited a good record of LAGs. The information here obtained on extant species represents a powerful tool for the interpretation of paleobiological traits present in closely related fossil forms.


Subject(s)
Turtles , Animals , Cortical Bone , Tibia , Humerus , South America
4.
J Anat ; 234(6): 875-898, 2019 06.
Article in English | MEDLINE | ID: mdl-30901084

ABSTRACT

Sharpey's fibers are considered the anatomical structures integrated to the muscles. Since these fibers leave marks at the microscopic level, their presence and distribution are used as evidence of muscle attachment in extinct and extant forms. In recent years, studies have been focusing on muscle-bone and tendon-bone interaction mostly on mammals. The main objective of this work is to contribute to the morphological and histological knowledge of muscle attachment in other amniotes, such as reptiles, and their variation related to different locomotor habits. In this way, a study was performed on terrestrial and aquatic turtles. The musculature related to the movement of the humerus, and pectoral girdle in Chelonoidis chilensis, Phrynops hilarii and Hydromedusa tectifera was analyzed. Dissections were performed mapping the origins and insertions of each muscle and undecalcified thin sections were performed in specific muscular attachment sites. We found some differences which were not previously reported, related to the insertion of the m. pectoralis, the m. coracobrachialis magnus and the origin of the m. tractor radii. The osteohistology revealed the presence of Sharpey's fibers in the cortex of all the bone elements analyzed. Patterns were established in relation to the orientation and density of Sharpey's fibers, which were used for the categorization of each muscle attachment site. The comparative micro-anatomical study of these areas did not reveal any important differences between terrestrial and freshwater turtles in muscles involved with the rotation, abduction and adduction of the humerus. In this way, the preliminary results suggest an absence of correlation between the distribution and density of Sharpey's fibers between different habitat forms, at least in the bones and species analyzed.


Subject(s)
Bone and Bones/anatomy & histology , Muscle, Skeletal/anatomy & histology , Tendons/anatomy & histology , Turtles/anatomy & histology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...