Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Virol ; 97(10): e0124123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772824

ABSTRACT

IMPORTANCE: CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/ß-catenin pathway as an important component of viral reactivation. We further define that pUL8 and ß-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with ß-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.


Subject(s)
Antigens, CD34 , Cytomegalovirus , Dishevelled Proteins , Hematopoietic Stem Cells , Viral Proteins , Virus Activation , beta Catenin , Humans , Antigens, CD34/metabolism , beta Catenin/chemistry , beta Catenin/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Dishevelled Proteins/chemistry , Dishevelled Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/virology , PDZ Domains , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Latency/genetics
2.
Dev Dyn ; 242(6): 687-98, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23553814

ABSTRACT

BACKGROUND: Retinoic acid (RA), plays an essential role in the growth and patterning of vertebrate limb. While the developmental processes regulated by RA are well understood, little is known about the transcriptional mechanisms required to precisely control limb RA synthesis. Here, Aldh1a2 functions as the primary enzyme necessary for RA production which regulates forelimb outgrowth and hindlimb digit separation. Because mice lacking HOXA13 exhibit similar defects in digit separation as Aldh1a2 mutants, we hypothesized that HOXA13 regulates Aldh1a2 to facilitate RA-mediated interdigital programmed cell death (IPCD) and digit separation. RESULTS: In this report, we identify Aldh1a2 as a direct target of HOXA13. In absence of HOXA13 function, Aldh1a2 expression, RA signaling, and IPCD are reduced. In the limb, HOXA13 binds a conserved cis-regulatory element in the Aldh1a2 locus that can be regulated by HOXA13 to promote gene expression. Finally, decreased RA signaling and IPCD can be partially rescued in the Hoxa13 mutant hindlimb by maternal RA supplementation. CONCLUSIONS: Defects in IPCD and digit separation in Hoxa13 mutant mice may be caused in part by reduced levels of RA signaling stemming from a loss in the direct regulation of Aldh1a2. These findings provide new insights into the transcriptional regulation of RA signaling necessary for limb morphogenesis.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Apoptosis , Extremities/embryology , Gene Expression Regulation, Developmental , Homeodomain Proteins/physiology , Aldehyde Dehydrogenase 1 Family , Animals , Base Sequence , Body Patterning , Cytochrome P-450 Enzyme System/metabolism , Female , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutation , Retinal Dehydrogenase , Retinoic Acid 4-Hydroxylase , Sequence Homology, Nucleic Acid , Signal Transduction , Time Factors , Transcription, Genetic , Transgenes , Tretinoin/metabolism
3.
Dev Dyn ; 239(2): 446-57, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20034107

ABSTRACT

The loss of HOXA13 function severely disrupts embryonic limb development. However, because embryos lacking HOXA13 die by mid-gestation, the defects present in the mutant limb could arise as a secondary consequence of failing embryonic health. In our analysis of the mutant Hoxa13(GFP) allele, we identified a surviving cohort of homozygous mutants exhibiting severe limb defects including: missing phalanx elements, fusions of the carpal/tarsal elements, and significant reductions in metacarpal/metatarsal length. Characterization of prochondrogenic genes in the affected carpal/tarsal regions revealed significant reduction in Gdf5 expression, whereas Bmp2 expression was significantly elevated. Analysis of Gdf5 mRNA localization also revealed diffuse expression in the carpal/tarsal anlagen, suggesting a role for HOXA13 in the organization of the cells necessary to delineate individual carpal/tarsal elements. Together these results identify Gdf5 as a potential target gene of HOXA13 target gene and confirm a specific role for HOXA13 during appendicular skeletal development.


Subject(s)
Foot Bones/embryology , Growth Differentiation Factor 5/metabolism , Homeodomain Proteins/metabolism , Skeleton , Animals , Cell Death , Cell Proliferation , Female , Homeodomain Proteins/genetics , Homozygote , Male , Mice , Mice, Inbred C57BL , Mutation , SOX9 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL