Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
J Pers Med ; 14(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38541063

ABSTRACT

(1) Background: High dose gradients and manual steps in brachytherapy treatment procedures can lead to dose errors which make the use of in vivo dosimetry (IVD) highly recommended for verifying brachytherapy treatments. A new procedure was presented to obtain a calibration factor which allows fast and robust calibration of plastic scintillation detector (PSD) probes for the geometry of a compact phantom using Monte Carlo simulations. Additionally, characterization of PSD energy, angular, and temperature dependences was performed. (2) Methods: PENELOPE/PenEasy code was used to obtain the calibration factor. To characterize the energy dependence of the PSD, the signal was measured at different radial and transversal distances. The sensitivity to the angular position was characterized in axial and azimuthal planes. (3) Results: The calibration factor obtained allows for an absorbed dose to water determination in full scatter conditions from ionization measured in a mini polymethylmethacrylate (PMMA) phantom. The energy dependence of the PSD along the radial distances obtained was (2.3 ± 2.1)% (k = 1). The azimuthal angular dependence measured was (2.6 ± 3.4)% (k = 1). The PSD response decreased by (0.19 ± 0.02)%/°C with increasing detector probe temperature. (4) Conclusions: The energy, angular, and temperature dependence of a PSD is compatible with IVD.

2.
Phys Med ; 114: 103153, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37778209

ABSTRACT

PURPOSE: To develop a QA procedure, easy to use, reproducible and based on open-source code, to automatically evaluate the stability of different metrics extracted from CT images: Hounsfield Unit (HU) calibration, edge characterization metrics (contrast and drop range) and radiomic features. METHODS: The QA protocol was based on electron density phantom imaging. Home-made open-source Python code was developed for the automatic computation of the metrics and their reproducibility analysis. The impact on reproducibility was evaluated for different radiation therapy protocols, and phantom positions within the field of view and systems, in terms of variability (Shapiro-Wilk test for 15 repeated measurements carried out over three days) and comparability (Bland-Altman analysis and Wilcoxon Rank Sum Test or Kendall Rank Correlation Coefficient). RESULTS: Regarding intrinsic variability, most metrics followed a normal distribution (88% of HU, 63% of edge parameters and 82% of radiomic features). Regarding comparability, HU and contrast were comparable in all conditions, and drop range only in the same CT scanner and phantom position. The percentages of comparable radiomic features independent of protocol, position and system were 59%, 78% and 54%, respectively. The non-significantly differences in HU calibration curves obtained for two different institutions (7%) translated in comparable Gamma Index G (1 mm, 1%, >99%). CONCLUSIONS: An automated software to assess the reproducibility of different CT metrics was successfully created and validated. A QA routine proposal is suggested.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Calibration , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Software
3.
Cancers (Basel) ; 15(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37173950

ABSTRACT

OBJECTIVES: The main goal of this work is to design and characterize a user-friendly methodology to perform mailed dosimetric audits in high dose rate (HDR) brachytherapy for systems using either Iridium-192 (192Ir) or Cobalt-60 (60Co) sources. METHODS: A solid phantom was designed and manufactured with four catheters and a central slot to place one dosimeter. Irradiations with an Elekta MicroSelectron V2 for 192Ir, and with a BEBIG Multisource for 60Co were performed for its characterization. For the dose measurements, nanoDots, a type of optically stimulated luminescent dosimeters (OSLDs), were characterized. Monte Carlo (MC) simulations were performed to evaluate the scatter conditions of the irradiation set-up and to study differences in the photon spectra of different 192Ir sources (Microselectron V2, Flexisource, BEBIG Ir2.A85-2 and Varisource VS2000) reaching the dosimeter in the irradiation set-up. RESULTS: MC simulations indicate that the surface material on which the phantom is supported during the irradiations does not affect the absorbed dose in the nanoDot. Generally, differences below 5% were found in the photon spectra reaching the detector when comparing the Microselectron V2, the Flexisource and the BEBIG models. However, differences up to 20% are observed between the V2 and the Varisource VS2000 models. The calibration coefficients and the uncertainty in the dose measurement were evaluated. CONCLUSIONS: The system described here is able to perform dosimetric audits in HDR brachytherapy for systems using either 192Ir or 60Co sources. No significant differences are observed between the photon spectra reaching the detector for the MicroSelectron V2, the Flexisource and the BEBIG 192Ir sources. For the Varisource VS2000, a higher uncertainty is considered in the dose measurement to allow for the nanoDot response.

4.
Brachytherapy ; 22(1): 108-119, 2023.
Article in English | MEDLINE | ID: mdl-36376228

ABSTRACT

PURPOSE: Radiotherapy techniques have been utilized to treat keratinocyte skin carcinoma (KSC). The objective of this study was to report the results of patients with KSC treated with HDR brachytherapy, with a variety of techniques and applicators. A statistical analysis of clinical, radiobiological, and technical factors has been made to analyze those factors related to skin acute toxicity, focused on acute epithelitis G3. METHODS AND MATERIALS: Between February 2005 and August 2020, 93 patients with 120 histologically proven KSC have been treated in our Institution. BT treatment has been performed using superficial BT/plesiotherapy (Valencia applicator (22%), flaps (48%), customized molds (4%) or interstitial techniques (26%)). The indications of BT were primary/definitive in 38 treatments (32%) or adjuvant/postoperative in 82 (68%). In 14 (17%) of the 82 operated patients a skin graft. Mean comparison t tests were performed for quantitative variables, and percentage comparison Chi2 tests for qualitative. Multivariate binomial logistic regression models were done. RESULTS: Median follow-up was 36.5 months (range 5-141). Local control was achieved in 110 treatments (92%). Acute toxicity, dermatitis, was G1 7%; G2, 57% and G3 38%. The main factors statistically associated to the appearance of dermatitis G3 were the total dose, the volume treated, and the use of manufactured flaps. The main protective factor against dermatitis G3 was implant of skin graft. CONCLUSIONS: In KSC BT the use of manufactured flap is accompanied by greater EG3, only with a relationship with the volume of treatment and total dose.


Subject(s)
Brachytherapy , Carcinoma , Dermatitis , Skin Neoplasms , Humans , Brachytherapy/methods , Skin Neoplasms/radiotherapy , Radiotherapy Dosage , Keratinocytes , Dermatitis/etiology
5.
Radiother Oncol ; 176: 108-117, 2022 11.
Article in English | MEDLINE | ID: mdl-36167195

ABSTRACT

The vast majority of radiotherapy departments in Europe using brachytherapy (BT) perform temporary implants of high- or pulsed-dose rate (HDR-PDR) sources with photon energies higher than 50 keV. Such techniques are successfully applied to diverse pathologies and clinical scenarios. These recommendations are the result of Working Package 21 (WP-21) initiated within the BRAchytherapy PHYsics Quality Assurance System (BRAPHYQS) GEC-ESTRO working group with a focus on HDR-PDR source calibration. They provide guidance on the calibration of such sources, including practical aspects and issues not specifically accounted for in well-accepted societal recommendations, complementing the BRAPHYQS WP-18 Report dedicated to low energy BT photon emitting sources (seeds). The aim of this report is to provide a European-wide standard in HDR-PDR BT source calibration at the hospital level to maintain high quality patient treatments.


Subject(s)
Brachytherapy , Humans , Brachytherapy/methods , Radiotherapy Dosage , Calibration , Photons/therapeutic use , Hospitals
6.
Med Phys ; 49(9): 6195-6208, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35925023

ABSTRACT

PURPOSE: Monte Carlo (MC) simulation studies, aimed at evaluating the magnitude of tissue heterogeneity in 125 I prostate permanent seed implant brachytherapy (BT), customarily use clinical post-implant CT images to generate a virtual representation of a realistic patient model (virtual patient model). Metallic artifact reduction (MAR) techniques and tissue assignment schemes (TAS) are implemented on the post-implant CT images to mollify metallic artifacts due to BT seeds and to assign tissue types to the voxels corresponding to the bright seed spots and streaking artifacts, respectively. The objective of this study is to assess the combined influence of MAR and TAS on MC absorbed dose calculations in post-implant CT-based phantoms. The virtual patient models used for 125 I prostate implant MC absorbed dose calculations in this study are derived from the CT images of an external radiotherapy prostate patient without BT seeds and prostatic calcifications, thus averting the need to implement MAR and TAS. METHODS: The geometry of the IsoSeed I25.S17plus source is validated by comparing the MC calculated results of the TG-43 parameters for the line source approximation with the TG-43U1S2 consensus data. Four MC absorbed dose calculations are performed in two virtual patient models using the egs_brachy MC code: (1) TG-43-based Dw,w-TG 43 , (2) Dw,w-MBDC that accounts for interseed scattering and attenuation (ISA), (3) Dm,m that examines ISA and tissue heterogeneity by scoring absorbed dose in tissue, and (4) Dw,m that unlike Dm,m scores absorbed dose in water. The MC absorbed doses (1) and (2) are simulated in a TG-43 patient phantom derived by assigning the densities of every voxel to 1.00 g cm-3 (water), whereas MC absorbed doses (3) and (4) are scored in the TG-186 patient phantom generated by mapping the mass density of each voxel to tissue according to a CT calibration curve. The MC absorbed doses calculated in this study are compared with VariSeed v8.0 calculated absorbed doses. To evaluate the dosimetric effect of MAR and TAS, the MC absorbed doses of this work (independent of MAR and TAS) are compared to the MC absorbed doses of different 125 I source models from previous studies that were calculated with different MC codes using post-implant CT-based phantoms generated by implementing MAR and TAS on post-implant CT images. RESULTS: The very good agreement of TG-43 parameters of this study and the published consensus data within 3% validates the geometry of the IsoSeed I25.S17plus source. For the clinical studies, the TG-43-based calculations show a D90 overestimation of more than 4% compared to the more realistic MC methods due to ISA and tissue composition. The results of this work generally show few discrepancies with the post-implant CT-based dosimetry studies with respect to the D90 absorbed dose metric parameter. These discrepancies are mainly Type B uncertainties due to the different 125 I source models and MC codes. CONCLUSIONS: The implementation of MAR and TAS on post-implant CT images have no dosimetric effect on the 125 I prostate MC absorbed dose calculation in post-implant CT-based phantoms.


Subject(s)
Brachytherapy , Prostate , Artifacts , Brachytherapy/methods , Humans , Male , Monte Carlo Method , Phantoms, Imaging , Prostate/diagnostic imaging , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Water
7.
Cancers (Basel) ; 14(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35884528

ABSTRACT

Intracavitary brachytherapy (BT, Interventional Radiotherapy, IRT), plays an essential role in the curative intent of locally advanced cervical cancer, for which the conventional approach involves external beam radiotherapy with concurrent chemotherapy followed by BT. This work aims to review the different methodologies used by commercially available treatment planning systems (TPSs) in exclusive magnetic resonance imaging-based (MRI) cervix BT with interstitial component treatments. Practical aspects and improvements to be implemented into the TPSs are discussed. This review is based on the clinical expertise of a group of radiation oncologists and medical physicists and on interactive demos provided by the software manufacturers. The TPS versions considered include all the new tools currently in development for future commercial releases. The specialists from the supplier companies were asked to propose solutions to some of the challenges often encountered in a clinical environment through a questionnaire. The results include not only such answers but also comments by the authors that, in their opinion, could help solve the challenges covered in these questions. This study summarizes the possibilities offered nowadays by commercial TPSs, highlighting the absence of some useful tools that would notably improve the planning of MR-based interstitial component cervix brachytherapy.

8.
Med Phys ; 49(8): 5576-5588, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35644023

ABSTRACT

PURPOSE: This work aims to simulate clustered DNA damage from ionizing radiation and estimate the relative biological effectiveness (RBE) for radionuclide (rBT)- and electronic (eBT)-based surface brachytherapy through a hybrid Monte Carlo (MC) approach, using realistic models of the sources and applicators. METHODS: Damage from ionizing radiation has been studied using the Monte Carlo Damage Simulation algorithm using as input the primary electron fluence simulated using a state-of-the-art MC code, PENELOPE-2018. Two 192 Ir rBT applicators, Valencia and Leipzig, one 60 Co source with a Freiburg Flap applicator (reference source), and two eBT systems, Esteya and INTRABEAM, have been included in this study implementing full realizations of their geometries as disclosed by the manufacturer. The role played by filtration and tube kilovoltage has also been addressed. RESULTS: For rBT, an RBE value of about 1.01 has been found for the applicators and phantoms considered. In the case of eBT, RBE values for the Esteya system show an almost constant RBE value of about 1.06 for all depths and materials. For INTRABEAM, variations in the range of 1.12-1.06 are reported depending on phantom composition and depth. Modifications in the Esteya system, filtration, and tube kilovoltage give rise to variations in the same range. CONCLUSIONS: Current clinical practice does not incorporate biological effects in surface brachytherapy. Therefore, the same absorbed dose is administered to the patients independently on the particularities of the rBT or eBT system considered. The almost constant RBE values reported for rBT support that assumption regardless of the details of the patient geometry, the presence of a flattening filter in the applicator design, or even significant modifications in the photon energy spectra above 300 keV. That is not the case for eBT, where a clear dependence on the eBT system and the characteristics of the patient geometry are reported. A complete study specific for each eBT system, including detailed applicator characteristics (size, shape, filtering, among others) and common anatomical locations, should be performed before adopting an existing RBE value.


Subject(s)
Brachytherapy , Relative Biological Effectiveness , Brachytherapy/adverse effects , Brachytherapy/methods , DNA Damage/radiation effects , Electronics , Humans , Monte Carlo Method , Radioisotopes
9.
J Pers Med ; 12(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35743696

ABSTRACT

(1) Background: In brachytherapy, there are still many manual procedures that can cause adverse events which can be detected with in vivo dosimetry systems. Plastic scintillator dosimeters (PSD) have interesting properties to achieve this objective such as real-time reading, linearity, repeatability, and small size to fit inside brachytherapy catheters. The purpose of this study was to evaluate the performance of a PSD in postoperative endometrial brachytherapy in terms of source dwell time accuracy. (2) Methods: Measurements were carried out in a PMMA phantom to characterise the PSD. Patient measurements in 121 dwell positions were analysed to obtain the differences between planned and measured dwell times. (3) Results: The repeatability test showed a relative standard deviation below 1% for the measured dwell times. The relative standard deviation of the PSD sensitivity with accumulated absorbed dose was lower than 1.2%. The equipment operated linearly in total counts with respect to absorbed dose and also in count rate versus absorbed dose rate. The mean (standard deviation) of the absolute differences between planned and measured dwell times in patient treatments was 0.0 (0.2) seconds. (4) Conclusions: The PSD system is useful as a quality assurance tool for brachytherapy treatments.

10.
Phys Med ; 94: 35-42, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34995976

ABSTRACT

PURPOSE: The aim of this work is to present a ready to industrialize low-cost and easy-to-install bleeding detector for use in intraoperative electron radiation therapy (IOERT). The detector works in stand-alone mode and is embedded into a translucent polymethylmethacrylate (PMMA) applicator avoiding any contact with the patient, which represent a novelty compared to previous designs. The use of this detector will prevent dose misadministration during irradiation in the event of accumulation of fluids in the applicator. METHODS: The detector is based on capacitive sensor and wireless power-supply electronics. Both sensor and electronics have been embedded in the applicator, so that any contact with the patient would be avoided. Since access to the tumor can be done through different trajectories, the detector has been calibrated for different tilting angles. RESULTS: The result of the calibration provides us with a fit curve that allows the interpolation of the results at any angle. Comparison of estimated fluid height vs real height gives an error of 1 mm for tilting angles less than 10° and 2 mm for tilting angles greater than 15°. This accuracy is better than the one required by clinic. CONCLUSIONS: The performance of the bleeding detector was evaluated in situ. No interference was observed between the detector and the beam. In addition, a user-friendly mobile application has been developed to help the surgical team making decisions before and during irradiation. The measurement provided by the mobile application was stable during the irradiation process.


Subject(s)
Electrons , Particle Accelerators , Calibration , Humans , Intraoperative Period , Polymethyl Methacrylate , Radiotherapy , Radiotherapy Dosage
11.
J Radiosurg SBRT ; 8(4): 283-290, 2022.
Article in English | MEDLINE | ID: mdl-37416332

ABSTRACT

Purpose: In the implementation of the use of EncompassTM partially open immobilization mask to perform SRS of multiple brain metastasis, the evaluation of patient's intrafraction motion (IM) is deemed convenient to verify that the margins applied to the GTV are able to ensure adequate dose coverage to each lesion. Methods: IM was determined by comparing the pre- and post-treatment CBCT images with respect to the simulation CT for a total of 23 fractions. The dosimetric impact on GTV coverage due to translational errors in patient positioning and rotational uncertainties of LINAC's performance was also evaluated. Results: The absolute magnitude of IM was less than 1 mm in all cases. The dosimetric difference on GTV coverage due to patient's IM was inferior to 5%. There was not found any significant correlation between the dosimetric impact of rotational uncertainties with the distance to the isocenter. Conclusion: The margins applied to the GTV are adequate when using EncompassTM immobilization device.

13.
Phys Imaging Radiat Oncol ; 19: 108-111, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34401536

ABSTRACT

BACKGROUND AND PURPOSE: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. MATERIALS AND METHODS: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) high-energy sources (192Ir and 60Co), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. RESULTS: Over the survey period, 77% of the 192Ir measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% ± 1.15% for 192Ir and -0.1% ± 1.3% for 60Co. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. CONCLUSIONS: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.

14.
Rep Pract Oncol Radiother ; 26(1): 119-127, 2021.
Article in English | MEDLINE | ID: mdl-34046222

ABSTRACT

BACKGROUND: Utilization of stereotactic radiosurgery (SRS) for brain metastases (BM) has become the technique of choice as opposed to whole brain radiation therapy (WBRT). The aim of this work is to evaluate the feasibility and potential benefits in terms of normal tissue (NT) and dose escalation of volumetric modulated arc therapy (VMAT) in SRS metastasis treatment. A VMAT optimization procedure has therefore been developed for internal dose scaling which minimizes planner dependence. MATERIALS AND METHODS: Five patient-plans incorporating treatment with frame-based SRS with dynamic conformal arc technique (DA) were re-planned for VMAT. The lesions selected were between 4-6 cm3. The same geometry used in the DA plans was maintained for the VMAT cases. A VMAT planning procedure was performed attempting to scale the dose in inner auxiliary volumes, and to explore the potential for dose scaling with this technique. Comparison of dose-volume histogram (DVH) parameters were obtained. RESULTS: VMAT allows a superior NT sparing plus conformity and dose scaling using the auxiliary volumes. The VMAT results were significantly superior in NT sparing, improving both the V10 and V12 values in all cases, with a 2-3 cm3 saving. In addition, VMAT improves the dose coverage D95 by about 0.5 Gy. The objective of dose escalation was achieved with VMAT with an increment of the Dmean and the Dmedian of about 2 Gy. CONCLUSIONS: This work shows a benefit of VMAT in SRS treatment with significant NT sparing. A VMAT optimization procedure, based on auxiliary inner volumes, has been developed, enabling internal dose escalation.

15.
J Contemp Brachytherapy ; 13(2): 135-144, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33897786

ABSTRACT

PURPOSE: To compare brachytherapy (BT) boost of low-dose-rate (LDR) and high-dose-rate (HDR) techniques in patients diagnosed with intermediate-risk prostate cancer. MATERIAL AND METHODS: Between January 2005 and February 2018, 142 patients (50 LDR and 92 HDR) with intermediate-risk prostate cancer were treated with a BT boost, and retrospectively analyzed. Prescribed dose was 45 Gy with external beam radiotherapy (EBRT) plus 100-108 Gy with LDR-BT, and 60 Gy with EBRT plus one fraction of 10 Gy with HDR-BT. 99% of patients received androgen deprivation therapy (ADT) for 6 months. Primary endpoint was to compare LDR and HDR boosts in terms of biochemical progression-free survival (bPFS). Secondary endpoint, after re-classifying patients into "favorable" and "unfavorable" sub-groups, was to analyze differences with a similar treatment intensity. RESULTS: Median overall follow-up for the total cohort was 66.5 months (range, 16-185 months). There were no significant differences in bPFS, overall survival, cause specific survival, local failure, lymph node failure, or distant failure when LDR or HDR was employed. bPFS at 90 months was 100% for favorable, and 89% and 85% for unfavorable patients at 60 months and 90 months, respectively (log-rank test, p = 0.017). The crude incidence of genitourinary acute and chronic toxicity grade 3 was 0.7% and 4%, respectively. Twelve patients (8%) had chronic rectal hemorrhage grade 2, in whom argon was applied (4 LDR and 8 HDR). CONCLUSIONS: Combined treatment is an excellent therapeutic option in patients with intermediate-risk prostate carcinoma, with similar results in both LDR and HDR approaches and very low toxicities. Importantly, the current literature has indicated that unfavorable-risk patients belong to a different category, and should be treated as patients with high-risk factors. Therefore, the stratification and identification of both risk groups is extremely relevant.

16.
J Contemp Brachytherapy ; 13(6): 680-686, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35079255

ABSTRACT

PURPOSE: The aim of this paper was to assess development of high-dose-rate (HDR) cervix brachytherapy (BT) implants in three Spanish institutions before and after introduction of EMBRACE II protocol. MATERIAL AND METHODS: 392 patients from three different institutions, treated between 2009 and 2019 were analyzed. D90 of high-risk clinical target volume (HR-CTV) and D2cc of organs at risk (OARs) of all patients were collected. Statistical distribution was analyzed for two different periods of time: before and after EMBRACE II publication. Index I was applied based on collected dosimetric quantities (D90 and D2cc) to enhance equilibrium between HR-CTV coverage and doses to OARs. Variation in dosimetry and index depending on CTV and technique used (IC vs. IC/IT) were also evaluated. RESULTS: Adaptation of institutions to EMBRACE II protocol resulted in a statistically significant increase of D90 HR-CTV (Institution 1; p < 0.00001) or decrease of D2cc OARs (Institution 2; p < 0.04). Increase in the use of interstitial component showed higher coverage of HR-CTV for Institution 3 (p = 0.03), and lower doses to OARs for the same coverage of HR-CTV at Institution 2 (p-OARs < 0.03). Even though index I was only significantly different between periods for Institution 1 (p < 0.0000001), it was able to show a reduction of dose variability related to higher expertise and higher interstitial component. CONCLUSIONS: Depending on local protocol before EMBRACE II, the adaptation through increasing interstitial component and physician and physicist training, resulted in a significant increase of HR-CTV doses or reduction of OARs doses. Index I was able to describe an evolution of equilibrium between CTV coverage and OARs' sparing.

17.
Med Phys ; 47(10): e951-e987, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32862452

ABSTRACT

The surface brachytherapy Task Group report number 253 discusses the common treatment modalities and applicators typically used to treat lesions on the body surface. Details of commissioning and calibration of the applicators and systems are discussed and examples are given for a risk-based analysis approach to the quality assurance measures that are necessary to consider when establishing a surface brachytherapy program.


Subject(s)
Brachytherapy , Calibration , Radiotherapy Dosage , Research Report
18.
Phys Med ; 76: 109-116, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32673822

ABSTRACT

PURPOSE: IORT with mobile linear accelerators is a well-established modality where the dose rate and, therefore, the dose per pulse are very high. The constancy of the dosimetric parameters of the accelerator has to be checked daily. The aim of this work is to develop a phantom with embedded detectors to improve both accuracy and efficiency in the daily test of an IORT linac at the surgery room. METHODS: The developed phantom is manufactured with transparent polymethyl methacrylate (PMMA), allocating 6 parallel-plate chambers: a central one to evaluate the on-axis beam output, another on-axis one placed at a fixed depth under the previous one to evaluate the energy constancy and four off-axis chambers to evaluate the flatness and symmetry. To analyse the readings a specific application has been developed. RESULTS: For all chambers and energies, the mean saturation and polarization corrections were smaller than 0.7%. The beam is monitored at different levels of the clinical beam. Output, energy constancy and flatness correlate very well with the correspondent values with the complete applicator. During the first six months of clinical use the beam dosimetric parameters showed excellent stability. CONCLUSIONS: A phantom has been developed with embedded parallel plate chambers attached to the upper applicator part of an IORT linac. The phantom allows a very efficient setup reducing the time to check the parameters. It provides complete dosimetric information (output, energy and flatness) with just one shot and using ionization chambers with minimum saturation effect, as this highly pulsed beam requires.


Subject(s)
Electrons , Particle Accelerators , Phantoms, Imaging , Radiometry , Radiotherapy Dosage
19.
Phys Med Biol ; 65(24)2020 12 04.
Article in English | MEDLINE | ID: mdl-32464622

ABSTRACT

Three different correction factors for measurements with the parallel-plate ionization chamber PTW T34013 on the Esteya electronic brachytherapy unit have been investigated. This chamber type is recommended by AAPM TG-253 for depth-dose measurements in the 69.5 kV x-ray beam generated by the Esteya unit.Monte Carlo simulations using the PENELOPE-2018 system were performed to determine the absorbed dose deposited in water and in the chamber sensitive volume at different depths with a Type A uncertainty smaller than 0.1%. Chamber-to-chamber differences have been explored performing measurements using three different chambers. The range of conical applicators available, from 10 to 30 mm in diameter, has been explored.Using a depth-independent global chamber perturbation correction factor without a shift of the effective point of measurement yielded differences between the absorbed dose to water and the corrected absorbed dose in the sensitive volume of the chamber of up to 1% and 0.6% for the 10 mm and 30 mm applicators, respectively. Calculations using a depth-dependent perturbation factor, including or excluding a shift of the effective point of measurement, resulted in depth-dose differences of about ± 0.5% or less for both applicators. The smallest depth-dose differences were obtained when a shift of the effective point of measurement was implemented, being displaced 0.4 mm towards the center of the sensitive volume of the chamber. The correction factors were obtained with combined uncertainties of 0.4% (k = 2). Uncertainties due to chamber-to-chamber differences are found to be lower than 2%.The results emphasize the relevance of carrying out detailed Monte Carlo studies for each electronic brachytherapy device and ionization chamber used for its dosimetry.


Subject(s)
Brachytherapy , Brachytherapy/methods , Electronics , Monte Carlo Method , Radiometry/methods , X-Rays
20.
J Contemp Brachytherapy ; 12(2): 139-146, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32395138

ABSTRACT

PURPOSE: The ICRU 89 recommends reporting a set of vaginal dose points for cervical cancer treatments in order to quantify the goodness of implant. This vaginal dose reporting method for combined external beam radiotherapy and brachytherapy has been adopted by the EMBRACE II study protocol. Large variations in dose between patients and centers have been reported. The aim of this study was to determine possible discrepancies with consensus observers from the same institution. Therefore, the inter- and intra-observer variability were analyzed. MATERIAL AND METHODS: For five patients, five experienced observers reported dose at the proposed vaginal points twice. The effect of inter- and intra-observer variations on total dose was analyzed by estimating biologically equivalent dose EQD2 (α/ß = 3 Gy). Coefficient of variation (CV) was used to provide a measure of data dispersion as a proportion to the mean. RESULTS: The maximum inter-observer deviation among all patients and all points ranged from 0.5 Gy to 24.1 Gy in EQD2. The higher inter-observer discrepancies were found at points at 3 o'clock and at 6 o'clock, with respect to ovoids. In case of the maximum intra-observer deviation, it ranged from 0.5 Gy to 14.2 Gy, with higher deviation points at 12 o'clock and 9 o'clock, with respect to ovoids. CONCLUSIONS: There is a need to ensure consistency in vaginal points reporting. The impact of the dosimetric inter- and intra-observer variability should also be considered when dealing with dose tolerances and limits due to the potential dose gradient.

SELECTION OF CITATIONS
SEARCH DETAIL
...