Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Med Phys ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569141

ABSTRACT

BACKGROUND: Proton therapy is a form of radiotherapy commonly used to treat various cancers. Due to its high conformality, minor variations in patient anatomy can lead to significant alterations in dose distribution, making adaptation crucial. While cone-beam computed tomography (CBCT) is a well-established technique for adaptive radiation therapy (ART), it cannot be directly used for adaptive proton therapy (APT) treatments because the stopping power ratio (SPR) cannot be estimated from CBCT images. PURPOSE: To address this limitation, Deep Learning methods have been suggested for converting pseudo-CT (pCT) images from CBCT images. In spite of convolutional neural networks (CNNs) have shown consistent improvement in pCT literature, there is still a need for further enhancements to make them suitable for clinical applications. METHODS: The authors introduce the 3D vision transformer (ViT) block, studying its performance at various stages of the proposed architectures. Additionally, they conduct a retrospective analysis of a dataset that includes 259 image pairs from 59 patients who underwent treatment for head and neck cancer. The dataset is partitioned into 80% for training, 10% for validation, and 10% for testing purposes. RESULTS: The SPR maps obtained from the pCT using the proposed method present an absolute relative error of less than 5% from those computed from the planning CT, thus improving the results of CBCT. CONCLUSIONS: We introduce an enhanced ViT3D architecture for pCT image generation from CBCT images, reducing SPR error within clinical margins for APT workflows. The new method minimizes bias compared to CT-based SPR estimation and dose calculation, signaling a promising direction for future research in this field. However, further research is needed to assess the robustness and generalizability across different medical imaging applications.

2.
Int J Radiat Oncol Biol Phys ; 108(4): 1047-1054, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32535161

ABSTRACT

PURPOSE: To present the radiation therapy quality assurance results from a prospective multicenter phase 2 randomized trial of short versus protracted urethra-sparing stereotactic body radiation therapy (SBRT) for localized prostate cancer. METHODS AND MATERIALS: Between 2012 and 2015, 165 patients with prostate cancer from 9 centers were randomized and treated with SBRT delivered either every other day (arm A, n = 82) or once a week (arm B, n = 83); 36.25 Gy in 5 fractions were prescribed to the prostate with (n = 92) or without (n = 73) inclusion of the seminal vesicles (SV), and the urethra planning-risk volume received 32.5 Gy. Patients were treated either with volumetric modulated arc therapy (VMAT; n = 112) or with intensity modulated radiation therapy (IMRT; n = 53). Deviations from protocol dose constraints, planning target volume (PTV) homogeneity index, PTV Dice similarity coefficient, and number of monitor units for each treatment plan were retrospectively analyzed. Dosimetric results of VMAT versus IMRT and treatment plans with versus without inclusion of SV were compared. RESULTS: At least 1 major protocol deviation occurred in 51 patients (31%), whereas none was observed in 41. Protocol violations were more frequent in the IMRT group (P < .001). Furthermore, the use of VMAT yielded better dosimetric results than IMRT for urethra planning-risk volume D98% (31.1 vs 30.8 Gy, P < .0001), PTV D2% (37.9 vs 38.7 Gy, P < .0001), homogeneity index (0.09 vs 0.10, P < .0001), Dice similarity coefficient (0.83 vs 0.80, P < .0001), and bladder wall V50% (24.5% vs 33.5%, P = .0001). To achieve its goals volumetric modulated arc therapy required fewer monitor units than IMRT (2275 vs 3378, P <.0001). The inclusion of SV in the PTV negatively affected the rectal wall V90% (9.1% vs 10.4%, P = .0003) and V80% (13.2% vs 15.7%, P = .0003). CONCLUSIONS: Protocol deviations with potential impact on tumor control or toxicity occurred in 31% of patients in this prospective clinical trial. Protocol deviations were more frequent with IMRT. Prospective radiation therapy quality assurance protocols should be strongly recommended for SBRT trials to minimize potential protocol deviations.


Subject(s)
Organ Sparing Treatments/methods , Organs at Risk , Prostatic Neoplasms/radiotherapy , Quality Assurance, Health Care , Radiosurgery/methods , Radiotherapy, Intensity-Modulated/standards , Urethra , Dose Fractionation, Radiation , Femur Head , Humans , Male , Organ Sparing Treatments/standards , Organ Sparing Treatments/statistics & numerical data , Prospective Studies , Prostate , Prostatic Neoplasms/pathology , Radiosurgery/standards , Radiosurgery/statistics & numerical data , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/statistics & numerical data , Rectum , Retrospective Studies , Seminal Vesicles , Urinary Bladder
3.
Front Oncol ; 10: 613669, 2020.
Article in English | MEDLINE | ID: mdl-33585238

ABSTRACT

Proton therapy has advantages and pitfalls comparing with photon therapy in radiation therapy. Among the limitations of protons in clinical practice we can selectively mention: uncertainties in range, lateral penumbra, deposition of higher LET outside the target, entrance dose, dose in the beam path, dose constraints in critical organs close to the target volume, organ movements and cost. In this review, we combine proposals under study to mitigate those pitfalls by using individually or in combination: (a) biological approaches of beam management in time (very high dose rate "FLASH" irradiations in the order of 100 Gy/s) and (b) modulation in space (a combination of mini-beams of millimetric extent), together with mechanical approaches such as (c) rotational techniques (optimized in partial arcs) and, in an effort to reduce cost, (d) gantry-less delivery systems. In some cases, these proposals are synergic (e.g., FLASH and minibeams), in others they are hardly compatible (mini-beam and rotation). Fixed lines have been used in pioneer centers, or for specific indications (ophthalmic, radiosurgery,…), they logically evolved to isocentric gantries. The present proposals to produce fixed lines are somewhat controversial. Rotational techniques, minibeams and FLASH in proton therapy are making their way, with an increasing degree of complexity in these three approaches, but with a high interest in the basic science and clinical communities. All of them must be proven in clinical applications.

4.
Radiat Oncol ; 13(1): 114, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921291

ABSTRACT

BACKGROUND: This is a dosimetric comparative study intended to establish appropriate low-to-intermediate dose-constraints for the rectal wall (Rwall) in the context of a randomized phase-II trial on urethra-sparing stereotactic body radiotherapy (SBRT) for prostate cancer. The effect of plan optimization on low-to-intermediate Rwall dose and the potential benefit of an endorectal balloon (ERB) are investigated. METHODS: Ten prostate cancer patients, simulated with and without an ERB, were planned to receive 36.25Gy (7.25Gyx5) to the planning treatment volume (PTV) and 32.5Gy to the urethral planning risk volume (uPRV). Reference plans with and without the ERB, optimized with respect to PTV and uPRV coverage objectives and the organs at risk dose constraints, were further optimized using a standardized stepwise approach to push down dose constraints to the Rwall in the low to intermediate range in five sequential steps to obtain paired plans with and without ERB (Vm1 to Vm5). Homogeneity index for the PTV and the uPRV, and the Dice similarity coefficient (DSC) for the PTV were analyzed. Dosimetric parameters for Rwall including the median dose and the dose received by 10 to 60% of the Rwall, bladder wall (Bwall) and femoral heads (FHeads) were compared. The monitor units (MU) per plan were recorded. RESULTS: Vm4 reduced by half D30%, D40%, D50%, and Dmed for Rwall and decreased by a third D60% while HIPTV, HIuPRV and DSC remained stable with and without ERB compared to Vmref. HIPTV worsened at Vm5 both with and without ERB. No statistical differences were observed between paired plans on Rwall, Bwall except a higher D2% for Fheads with and without an ERB. CONCLUSIONS: Further optimization to the Rwall in the context of urethra sparing prostate SBRT is feasible without compromising the dose homogeneity to the target. Independent of the use or not of an ERB, low-to-intermediate doses to the Rwall can be significantly reduced using a four-step sequential optimization approach.


Subject(s)
Organ Sparing Treatments/methods , Organs at Risk/radiation effects , Prostatic Neoplasms/radiotherapy , Radiation Injuries/prevention & control , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted , Rectum/radiation effects , Urethra/radiation effects , Humans , Male , Organ Sparing Treatments/instrumentation , Prospective Studies , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated
SELECTION OF CITATIONS
SEARCH DETAIL
...