Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(5): 3431-3440, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38697834

ABSTRACT

Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Light , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Molecular Structure , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects , Cisplatin/pharmacology , Cisplatin/chemistry , Particle Size , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Photochemical Processes , Density Functional Theory
2.
RSC Adv ; 12(12): 7133-7148, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35424664

ABSTRACT

A series of new organic ligands (5Z,5Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-ones (L) consisting of two 5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-one units linked with polymethylene chains of various lengths (n = 2-10, where n is the number of CH2 units) have been synthesized. The reactions of these ligands with CuCl2·2H2O and CuClO4·6H2O gave Cu2+ or Cu1+ containing mono- and binuclear complexes with Cu2LCl x (x = 2-4) or CuL(ClO4) y (y = 1, 2) composition. It was shown that the agents reducing Cu2+ to Cu1+ in the course of complex formation can be both a ligand and an organic solvent in which the reaction is carried out. This fundamentally distinguishes the selenium-containing ligands L from their previously described sulfur analogs, which by themselves are not capable of reducing Cu2+ during complexation under the same conditions. A higher cytotoxicity and reasonable selectivity to cancer cell lines for synthesized complexes of selenium-containing ligands was shown; unlike sulfur analogs, ligands L themselves demonstrate a high cytotoxicity, comparable in some cases to the toxicity of copper-containing complexes.

3.
Dalton Trans ; 49(41): 14528-14535, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33048098

ABSTRACT

The reactions of (Z)-3-aryl-2-(methylthio)-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazol-4-ones (3) with CuCl2·2H2O in the presence of a reducing solvent (alcohol or dimethylformamide (DMF)) produce three types of Cu-containing compounds: two Cu complexes with a composition of CuII(3)Cl2 (4) and CuI(3)Cl (5) as well as a salt (3 + H)+CuICl2- (6) in a 4 : 5 : 6 ratio depending on the substituent at the N(3) nitrogen atom of the ligand moiety. In non-reducing solvents (dimethyl sulfoxide (DMSO) and CHCl3/acetone), only complexes 4 were formed, All three Cu derivatives (4, 5, and 6) were characterized by single-crystal X-ray diffraction, UV/vis spectroscopy, and electrochemistry data. Convenient electrochemical and UV-vis spectral criteria were recorded, which made it possible to distinguish between the different Cu-containing compounds. Based on the electron spectroscopy and electron paramagnetic resonance (EPR) data, a possible scheme for the formation of compounds 4-6 was proposed, including the initial coordination of copper(ii) chloride with an organic ligand, the subsequent reduction of the resulting complex 4 by DMF with the formation of salt 6, and the further transition of salt 6 into the complex 5.

4.
J Med Chem ; 63(21): 13031-13063, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32985193

ABSTRACT

A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 µm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Imidazoles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Crystallography, X-Ray , DNA Damage/drug effects , Humans , Ligands , MCF-7 Cells , Models, Biological , Molecular Conformation , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Spheroids, Cellular/drug effects , Structure-Activity Relationship , Telomerase/antagonists & inhibitors , Telomerase/metabolism
5.
J Phys Chem B ; 116(40): 12295-305, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22928518

ABSTRACT

We have studied the rotational and translational diffusion of the spin probe 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPOL) in five imidazolium-based room-temperature ionic liquids (RTILs) and glycerol by means of X-band electron paramagnetic resonance (EPR) spectroscopy. Rotational correlation times and rate constants of intermolecular spin exchange have been determined by analysis of the EPR line shape at various temperatures and spin probe concentrations. The model of isotropic rotational diffusion cannot account for all spectral features of TEMPOL in all RTILs. In highly viscous RTILs, the rotational mobility of TEMPOL differs for different molecular axes. The translational diffusion coefficients have been calculated from spin exchange rate constants. To this end, line shape contributions stemming from Heisenberg exchange and from the electron-electron dipolar interaction have been separated based on their distinct temperature dependences. While the Debye-Stokes-Einstein law is found to apply for the rotational correlation times in all solvents studied, the dependence of the translational diffusion coefficients on the Stokes parameter T/η is nonlinear; i.e., deviations from the Stokes-Einstein law are observed. The effective activation energies of rotational diffusion are significantly larger than the corresponding values for translational motion. Effects of the identity of the RTIL cations and anions on the activation energies are discussed.


Subject(s)
Cyclic N-Oxides/chemistry , Ionic Liquids/chemistry , Temperature , Diffusion , Rotation , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL