Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
2.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370658

ABSTRACT

The proto-oncogene c-MYC is a key representative of the MYC transcription factor network regulating growth and metabolism. MML-1 (Myc- and Mondo-like) is its homolog in C. elegans. The functional and molecular cooperation between c-MYC and H3 lysine 79 methyltransferase DOT1L was demonstrated in several human cancer types, and we have earlier discovered the connection between C. elegans MML-1 and DOT-1.1. Here, we demonstrate the critical role of DOT1L/DOT-1.1 in regulating c-MYC/MML-1 target genes genome-wide by ensuring the removal of "spent" transcription factors from chromatin by the nuclear proteasome. Moreover, we uncover a previously unrecognized proteolytic activity of DOT1L, which may facilitate c-MYC turnover. This new mechanism of c-MYC regulation by DOT1L may lead to the development of new approaches for cancer treatment.

3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902152

ABSTRACT

Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Young Adult , Humans , Mitochondrial Dynamics , Multiomics , Proteomics , Cardiomyopathy, Hypertrophic/genetics , Myocytes, Cardiac/metabolism , Mutation , Induced Pluripotent Stem Cells/metabolism
4.
Mol Metab ; 69: 101682, 2023 03.
Article in English | MEDLINE | ID: mdl-36731652

ABSTRACT

OBJECTIVE: Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells. METHODS: We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding. RESULTS: Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFß-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion. CONCLUSIONS: Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the 'secretome' released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Adipocytes/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Diet , Fibrosis , Intracellular Signaling Peptides and Proteins/metabolism
5.
J Cell Biol ; 221(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35157000

ABSTRACT

ADP-ribosylation is a reversible post-translational modification where an ADP-ribose moiety is covalently attached to target proteins by ADP-ribosyltransferases (ARTs). Although best known for its nuclear roles, ADP-ribosylation is increasingly recognized as a key regulatory strategy across cellular compartments. ADP-ribosylation of mitochondrial proteins has been widely reported, but the exact nature of mitochondrial ART enzymes is debated. We have identified neuralized-like protein 4 (NEURL4) as a mitochondrial ART enzyme and show that most ART activity associated with mitochondria is lost in the absence of NEURL4. The NEURL4-dependent ADP-ribosylome in mitochondrial extracts from HeLa cells includes numerous mitochondrial proteins previously shown to be ADP-ribosylated. In particular, we show that NEURL4 is required for the regulation of mtDNA integrity via poly-ADP-ribosylation of mtLIG3, the rate-limiting enzyme for base excision repair (BER). Collectively, our studies reveal that NEURL4 acts as the main mitochondrial ART enzyme under physiological conditions and provide novel insights in the regulation of mitochondria homeostasis through ADP-ribosylation.


Subject(s)
ADP-Ribosylation , Mitochondrial Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , DNA, Mitochondrial/metabolism , HeLa Cells , Homeostasis , Humans , Protein Domains , Ubiquitin-Protein Ligases/chemistry
7.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33259812

ABSTRACT

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , SARS-CoV-2/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antiviral Agents , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Cytoskeleton , Drug Evaluation, Preclinical , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Phosphoproteins/genetics , Protein Transport , Proteome/genetics , SARS-CoV-2/genetics , Signal Transduction , Vero Cells , COVID-19 Drug Treatment
8.
Pharmacol Res ; 161: 105161, 2020 11.
Article in English | MEDLINE | ID: mdl-32846213

ABSTRACT

Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.


Subject(s)
Cell Communication , Cell Nucleus/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Cell Nucleus/genetics , Gene Expression Regulation , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Nuclear Proteins/genetics , Signal Transduction
9.
Sci Rep ; 10(1): 2380, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047213

ABSTRACT

Visceral white adipose tissue (vWAT) expands and undergoes extensive remodeling during diet-induced obesity. Much is known about the contribution of various stromal vascular cells to the remodeling process, but less is known of the changes that occur within the adipocyte as it becomes progressively dysfunctional. Here, we performed a transcriptome analysis of isolated vWAT adipocytes to assess global pathway changes occurring in response to a chronic high fat diet (HFD). The data demonstrate that the adipocyte responds to the HFD by adopting a fibroblast-like phenotype, characterized by enhanced expression of ECM, focal adhesion and cytoskeletal genes and suppression of many adipocyte programs most notably those associated with mitochondria. This study reveals that during obesity the adipocyte progressively becomes metabolically dysfunctional due to its acquisition of fibrogenic functions. We propose that mechano-responsive transcription factors such as MRTFA and SRF contribute to both upregulation of morphological genes as well as suppression of mitochondrial programs.


Subject(s)
Adipocytes, White/metabolism , Diet, High-Fat/adverse effects , Intra-Abdominal Fat/metabolism , Transcriptome , Animals , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Intra-Abdominal Fat/cytology , Male , Mice , Mice, Inbred C57BL
10.
Front Cell Dev Biol ; 8: 608044, 2020.
Article in English | MEDLINE | ID: mdl-33490071

ABSTRACT

G Protein Suppressor 2 (GPS2) is a multifunctional protein that exerts important roles in inflammation and metabolism in adipose, liver, and immune cells. GPS2 has recently been identified as a significantly mutated gene in breast cancer and other malignancies and proposed to work as a putative tumor suppressor. However, molecular mechanisms by which GPS2 prevents cancer development and/or progression are largely unknown. Here, we have profiled the phenotypic changes induced by GPS2 depletion in MDA-MB-231 triple negative breast cancer cells and investigated the underlying molecular mechanisms. We found that GPS2-deleted MDA-MB-231 cells exhibited increased proliferative, migratory, and invasive properties in vitro, and conferred greater tumor burden in vivo in an orthotopic xenograft mouse model. Transcriptomic, proteomic and phospho-proteomic profiling of GPS2-deleted MBA-MB-231 revealed a network of altered signals that relate to cell growth and PI3K/AKT signaling. Overlay of GPS2-regulated gene expression with MDA-MB-231 cells modified to express constitutively active AKT showed significant overlap, suggesting that sustained AKT activation is associated with loss of GPS2. Accordingly, we demonstrate that the pro-oncogenic phenotypes associated with GPS2 deletion are rescued by pharmacological inhibition of AKT with MK2206. Collectively, these observations confirm a tumor suppressor role for GPS2 and reveal that loss of GPS2 promotes breast cancer cell proliferation and tumor growth through uncontrolled activation of AKT signaling. Moreover, our study points to GPS2 as a potential biomarker for a subclass of breast cancers that would be responsive to PI3K-class inhibitor drugs.

11.
Free Radic Biol Med ; 143: 203-208, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31408725

ABSTRACT

The ability to respond to fluctuations of reactive oxygen species (ROS) within the cell is a central aspect of mammalian physiology. This dynamic process depends on the coordinated action of transcriptional factors to promote the expression of genes encoding for antioxidant enzymes. Here, we demonstrate that the transcriptional coregulators, PGC-1α and NCoR1, are essential mediators of mitochondrial redox homeostasis in skeletal muscle cells. Our findings reveal an antagonistic role of these coregulators in modulating mitochondrial antioxidant induction through Sod2 transcriptional control. Importantly, the activation of this mechanism by either PGC-1α overexpression or NCoR1 knockdown attenuates mitochondrial ROS levels and prevents cell death caused by lipid overload in skeletal muscle cells. The opposing actions of coactivators and corepressors, therefore, exert a commanding role over cellular antioxidant capacity.


Subject(s)
Gene Expression Regulation , Mitochondria/metabolism , Nuclear Receptor Co-Repressor 1/metabolism , Oxidation-Reduction/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Antioxidants/metabolism , Caenorhabditis elegans , Cell Survival , Green Fluorescent Proteins/metabolism , Homeostasis , Lipids/chemistry , Mice , Muscle, Skeletal/metabolism , Palmitates/pharmacology , Propidium/pharmacology , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Trans-Activators/metabolism , Transcription, Genetic
12.
J Vis Exp ; (141)2018 11 21.
Article in English | MEDLINE | ID: mdl-30531713

ABSTRACT

Most cellular processes are regulated by transcriptional modulation of specific gene programs. Such modulation is achieved through the combined actions of a wide range of transcription factors (TFs) and cofactors mediating transcriptional activation or repression via changes in chromatin structure. Chromatin immunoprecipitation (ChIP) is a useful molecular biology approach for mapping histone modifications and profiling transcription factors/cofactors binding to DNA, thus providing a snapshot of the dynamic nuclear changes occurring during different biological processes. To study transcriptional regulation in adipose tissue, samples derived from in vitro cell cultures of immortalized or primary cell lines are often favored in ChIP assays because of the abundance of starting material and reduced biological variability. However, these models represent a limited snapshot of the actual chromatin state in living organisms. Thus, there is a critical need for optimized protocols to perform ChIP on adipose tissue samples derived from animal models. Here we describe a protocol for efficient ChIP-seq of both histone modifications and non-histone proteins in brown adipose tissue (BAT) isolated from a mouse. The protocol is optimized for investigating genome-wide localization of proteins of interest and epigenetic markers in the BAT, which is a morphologically and physiologically distinct tissue amongst fat depots.


Subject(s)
Adipose Tissue, Brown/physiology , Chromatin Immunoprecipitation/methods , Protein Array Analysis/methods , Adipose Tissue, Brown/chemistry , Animals , Cell Nucleus/metabolism , DNA/genetics , DNA/metabolism , Epigenomics/methods , Histone Code/physiology , Mice , Protein Processing, Post-Translational/physiology , Sequence Analysis, DNA/methods , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Ann Neurol ; 84(2): 289-301, 2018 08.
Article in English | MEDLINE | ID: mdl-30014514

ABSTRACT

OBJECTIVE: In patients with mitochondrial DNA (mtDNA) maintenance disorders and with aging, mtDNA deletions sporadically form and clonally expand within individual muscle fibers, causing respiratory chain deficiency. This study aimed to identify the sub-cellular origin and potential mechanisms underlying this process. METHODS: Serial skeletal muscle cryosections from patients with multiple mtDNA deletions were subjected to subcellular immunofluorescent, histochemical, and genetic analysis. RESULTS: We report respiratory chain-deficient perinuclear foci containing mtDNA deletions, which show local elevations of both mitochondrial mass and mtDNA copy number. These subcellular foci of respiratory chain deficiency are associated with a local increase in mitochondrial biogenesis and unfolded protein response signaling pathways. We also find that the commonly reported segmental pattern of mitochondrial deficiency is consistent with the three-dimensional organization of the human skeletal muscle mitochondrial network. INTERPRETATION: We propose that mtDNA deletions first exceed the biochemical threshold causing biochemical deficiency in focal regions adjacent to the myonuclei, and induce mitochondrial biogenesis before spreading across the muscle fiber. These subcellular resolution data provide new insights into the possible origin of mitochondrial respiratory chain deficiency in mitochondrial myopathy. Ann Neurol 2018;84:289-301.


Subject(s)
Aging/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/ultrastructure , Gene Deletion , Muscle, Skeletal/physiology , Muscle, Skeletal/ultrastructure , Aging/pathology , Humans , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/pathology , Subcellular Fractions/pathology , Subcellular Fractions/ultrastructure
14.
Mol Cell ; 69(5): 757-772.e7, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29499132

ABSTRACT

As most of the mitochondrial proteome is encoded in the nucleus, mitochondrial functions critically depend on nuclear gene expression and bidirectional mito-nuclear communication. However, mitochondria-to-nucleus communication pathways in mammals are incompletely understood. Here, we identify G-Protein Pathway Suppressor 2 (GPS2) as a mediator of mitochondrial retrograde signaling and a transcriptional activator of nuclear-encoded mitochondrial genes. GPS2-regulated translocation from mitochondria to nucleus is essential for the transcriptional activation of a nuclear stress response to mitochondrial depolarization and for supporting basal mitochondrial biogenesis in differentiating adipocytes and brown adipose tissue (BAT) from mice. In the nucleus, GPS2 recruitment to target gene promoters regulates histone H3K9 demethylation and RNA POL2 activation through inhibition of Ubc13-mediated ubiquitination. These findings, together, reveal an additional layer of regulation of mitochondrial gene transcription, uncover a direct mitochondria-nuclear communication pathway, and indicate that GPS2 retrograde signaling is a key component of the mitochondrial stress response in mammals.


Subject(s)
Cell Nucleus/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/metabolism , Organelle Biogenesis , Signal Transduction/physiology , 3T3-L1 Cells , Active Transport, Cell Nucleus/physiology , Animals , Cell Nucleus/genetics , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Methylation , Mice , Mitochondria/genetics , Promoter Regions, Genetic/physiology , Transcriptional Activation/physiology
15.
EMBO Rep ; 18(7): 1123-1138, 2017 07.
Article in English | MEDLINE | ID: mdl-28539390

ABSTRACT

BAT-controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet-induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold-stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1-cre (BAT-Mfn2-KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold-stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender-specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP-synthesizing fat oxidation, whereas in BAT from males, complex I-driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT-Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole-body cold-stimulated thermogenesis.


Subject(s)
Adipose Tissue, Brown/metabolism , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/genetics , Insulin Resistance , Thermogenesis/genetics , Animals , Diet, High-Fat , Energy Metabolism , Female , Glycolysis , Male , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Obesity
16.
Mol Metab ; 6(1): 125-137, 2017 01.
Article in English | MEDLINE | ID: mdl-28123943

ABSTRACT

OBJECTIVE: Insulin signaling plays a unique role in the regulation of energy homeostasis and the impairment of insulin action is associated with altered lipid metabolism, obesity, and Type 2 Diabetes. The main aim of this study was to provide further insight into the regulatory mechanisms governing the insulin signaling pathway by investigating the role of non-proteolytic ubiquitination in insulin-mediated activation of AKT. METHODS: The molecular mechanism of AKT regulation through ubiquitination is first dissected in vitro in 3T3-L1 preadipocytes and then validated in vivo using mice with adipo-specific deletion of GPS2, an endogenous inhibitor of Ubc13 activity (GPS2-AKO mice). RESULTS: Our results indicate that K63 ubiquitination is a critical component of AKT activation in the insulin signaling pathway and that counter-regulation of this step is provided by GPS2 preventing AKT ubiquitination through inhibition of Ubc13 enzymatic activity. Removal of this negative checkpoint, through GPS2 downregulation or genetic deletion, results in sustained activation of insulin signaling both in vitro and in vivo. As a result, the balance between lipid accumulation and utilization is shifted toward storage in the adipose tissue and GPS2-AKO mice become obese under normal laboratory chow diet. However, the adipose tissue of GPS2-AKO mice is not inflamed, the levels of circulating adiponectin are elevated, and systemic insulin sensitivity is overall improved. CONCLUSIONS: Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin resistance.


Subject(s)
Adipose Tissue/metabolism , Insulin/metabolism , Intracellular Signaling Peptides and Proteins/physiology , 3T3 Cells , Adipocytes/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Inflammation/genetics , Insulin/genetics , Insulin/physiology , Insulin Resistance/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Obesity/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
17.
J Biol Chem ; 292(7): 2754-2772, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28039360

ABSTRACT

Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.


Subject(s)
B-Lymphocytes/cytology , Intracellular Signaling Peptides and Proteins/metabolism , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Animals , Bone Marrow Cells/cytology , Cell Differentiation , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Ubiquitination
18.
J Biol Chem ; 290(31): 19044-54, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26070566

ABSTRACT

G protein pathway suppressor 2 (GPS2) is a multifunctional protein involved in the regulation of a number of metabolic organs. First identified as part of the NCoR-SMRT corepressor complex, GPS2 is known to play an important role in the nucleus in the regulation of gene transcription and meiotic recombination. In addition, we recently reported a non-transcriptional role of GPS2 as an inhibitor of the proinflammatory TNFα pathway in the cytosol. Although this suggests that the control of GPS2 localization may be an important determinant of its molecular functions, a clear understanding of GPS2 differential targeting to specific cellular locations is still lacking. Here we show that a fine balance between protein stabilization and degradation tightly regulates GPS2 nuclear function. Our findings indicate that GPS2 is degraded upon polyubiquitination by the E3 ubiquitin ligase Siah2. Unexpectedly, interaction with the exchange factor TBL1 is required to protect GPS2 from degradation, with methylation of GPS2 by arginine methyltransferase PRMT6 regulating the interaction with TBL1 and inhibiting proteasome-dependent degradation. Overall, our findings indicate that regulation of GPS2 by posttranslational modifications provides an effective strategy for modulating its molecular function within the nuclear compartment.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/physiology , Proteasome Endopeptidase Complex/metabolism , Protein-Arginine N-Methyltransferases/physiology , Transducin/physiology , Active Transport, Cell Nucleus , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Methylation , Nuclear Localization Signals , Protein Stability , Protein Structure, Tertiary , Proteolysis , Ubiquitination
19.
Cell Rep ; 8(1): 163-76, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24953653

ABSTRACT

Timely and selective recruitment of transcription factors to their appropriate DNA-binding sites represents a critical step in regulating gene activation; however, the regulatory strategies underlying each factor's effective recruitment to specific promoter and/or enhancer regions are not fully understood. Here, we identify an unexpected regulatory mechanism by which promoter-specific binding, and therefore function, of peroxisome proliferator-activator receptor γ (PPARγ) in adipocytes requires G protein suppressor 2 (GPS2) to prime the local chromatin environment via inhibition of the ubiquitin ligase RNF8 and stabilization of the H3K9 histone demethylase KDM4A/JMJD2. Integration of genome-wide profiling data indicates that the pioneering activity of GPS2/KDM4A is required for PPARγ-mediated regulation of a specific transcriptional program, including the lipolytic enzymes adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). Hence, our findings reveal that GPS2 exerts a biologically important function in adipose tissue lipid mobilization by directly regulating ubiquitin signaling and indirectly modulating chromatin remodeling to prime selected genes for activation.


Subject(s)
Histone Demethylases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , PPAR gamma/metabolism , Promoter Regions, Genetic , Adipocytes/metabolism , Animals , Chromatin Assembly and Disassembly , Lipase/genetics , Lipase/metabolism , Lipolysis/genetics , Mice , Sterol Esterase/genetics , Sterol Esterase/metabolism , Ubiquitin-Protein Ligases/metabolism
20.
PLoS One ; 8(5): e59986, 2013.
Article in English | MEDLINE | ID: mdl-23690919

ABSTRACT

Checkpoint kinase 2 (Chk2) is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.


Subject(s)
Apoptosis/physiology , Checkpoint Kinase 2/metabolism , DNA Damage/physiology , Gene Expression Regulation/physiology , Nuclear Receptor Co-Repressor 2/metabolism , Phosphoprotein Phosphatases/metabolism , Apoptosis/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation , Enzyme Activation/physiology , Fluorescent Antibody Technique , Humans , Microarray Analysis , Protein Phosphatase 2C , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...