Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 31(6): 103987, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38617568

ABSTRACT

The most effective methodologies for generating Musa spp. explants involve the utilization of plant tissue culture micropropagation techniques. However, the pervasive challenge of microbial contamination significantly impedes the successful micropropagation of Musa spp. This study examined the antioxidant and antibacterial characteristics of the essential oil (LPO) and extract (LPE) obtained from the peel of Citrus aurantifolia. Additionally, we explored their mechanisms against common microbial contaminants in Musa spp. micropropagation. Using gas chromatography-mass spectrometry, we identified 28 components in LPO, with δ-limonene, ß-pinene, citral, trans-citral, ß-bisabolene, geranyl acetate, and α-pinene as the primary constituents. Meanwhile, liquid chromatography-mass spectrometry detected 17 components in LPE, highlighting nobiletin, tangeretin, scoparone, sinensetin, tetramethylscutellarein, 5-demethylnobiletin, and pyropheophorbide A as the predominant compounds. Evaluation using the DPPH and ABTS methods revealed the IC50 values for LPE at 0.66 ± 0.009 and 0.92 ± 0.012 mg/mL, respectively, indicating higher antioxidant activity compared to LPO, with IC50 values of 3.03 ± 0.019 and 4.27 ± 0.023 mg/mL using the same methods. Both LPO and LPE exhibited antimicrobial activities against all tested contaminant microorganisms through in vitro assays. Mechanistic investigations employing time-kill analysis, assessment of cell membrane integrity, and scanning electron microscopy (SEM) revealed changes in the morphological characteristics of the tested microbial contaminants, intensifying with increased concentration and exposure duration of LPO and LPE. These alterations led to substantial damage, including cell wall lysis, leakage of intracellular components, and subsequent cell death. Consequently, LPO and LPE emerge as promising alternatives for addressing microbial contamination in banana tissue cultures.

2.
Microbiol Res ; 283: 127665, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452552

ABSTRACT

Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.


Subject(s)
Drought Resistance , Trichoderma , Trichoderma/physiology , Bioprospecting , Plants/microbiology , Plant Development , Droughts , Stress, Physiological
3.
J Biomater Sci Polym Ed ; 35(7): 989-1007, 2024 05.
Article in English | MEDLINE | ID: mdl-38340314

ABSTRACT

A functional textile immobilized by microcapsules of the lime peel essential oils of C. aurantifolia (LPEO) was prepared and characterized. A varied amount of Chitosan/Alginate (CH/AG) ratios, followed by a mass of LPEO and concentration of sodium tripolyphosphate (STPP) crosslinker, was optimized sequentially to coacervate LPEO using a Tween 80 emulsifier. An antibacterial assay against both Gram-positive and Gram-negative bacteria was further evaluated for the embedded microcapsules. The LPEO (0.2 g) was effectively coacervated by CH/AG (5:3) crosslinked by 2% of STTP to give a yield, oil content (OC), and encapsulation efficiency (EE) of 53.45 ± 2.16%, 65.08 ± 2.60% and 85.04 ± 0.70% respectively. A rough spherical shape of LPEO microcapsules was homogeneously observed with an average particle size of 0.757 mm. An Avrami's kinetic model revealed the release mechanism of the core following zero-order kinetics (k = 1.11 ± 0.13 × 10-9 s-1, Ea = 70.21 kJ/mol). The LPEO microcapsules demonstrated good thermal stability up to 122 °C and maintained 38% OC at ambient temperature for four weeks. A 70.34 ± 4.16% of the LPEO microcapsules were successfully overlaid onto the gauze with citric acid binder and sodium phosphate catalyst. Overall, the immobilized microcapsules exhibited strong inhibition against S. aureus and moderate against S. epidermidis, E. coli, and K. pneumonia.


Subject(s)
Alginates , Anti-Bacterial Agents , Capsules , Chitosan , Oils, Volatile , Textiles , Chitosan/chemistry , Chitosan/pharmacology , Alginates/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Calcium Compounds/chemistry , Drug Compounding , Microbial Sensitivity Tests , Escherichia coli/drug effects , Polyphosphates/chemistry , Polyphosphates/pharmacology , Particle Size
4.
Foods ; 12(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37238855

ABSTRACT

Citrus aurantifolia is part of the Rutaceae family and belongs to the genus Citrus. It is widely used in food, the chemical industry, and pharmaceuticals because it has a unique flavor and odor. It is nutrient-rich and is beneficial as an antibacterial, anticancer, antioxidant, anti-inflammatory, and insecticide. Secondary metabolites present in C. aurantifolia are what give rise to biological action. Flavonoids, terpenoids, phenolics, limonoids, alkaloids, and essential oils are among the secondary metabolites/phytochemicals discovered in C. aurantifolia. Every portion of the plant's C. aurantifolia has a different composition of secondary metabolites. Environmental conditions such as light and temperature affect the oxidative stability of the secondary metabolites from C. aurantifolia. The oxidative stability has been increased by using microencapsulation. The advantages of microencapsulation are control of the release, solubilization, and protection of the bioactive component. Therefore, the chemical makeup and biological functions of the various plant components of C. aurantifolia must be investigated. The aim of this review is to discuss the bioactive components of C. aurantifolia such as essential oils, flavonoids, terpenoids, phenolic, limonoids, and alkaloids obtained from different parts of the plants and their biological activities such as being antibacterial, antioxidant, anticancer, an insecticide, and anti-inflammatory. In addition, various extraction techniques of the compounds out of different parts of the plant matrix as well as the microencapsulation of the bioactive components in food are also provided.

5.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432192

ABSTRACT

Essential oils (EOs) obtained from the Citrus genus were reported to exhibit good antimicrobial activity. Therefore, they can potentially be applied in daily necessities such as textile sectors as antibacterial functional fabric products. However, a packaging technique to retain such volatile and labile active substances is compulsory. In particular, microencapsulation was found to be a common coating technique employed to protect EOs from the effects of light, heat, humidity, stability, and controlled release of active substances. Various microencapsulation techniques have been introduced, but the most widely used method is complex coacervation, as it is simple, inexpensive, and capable of snaring high essential oils. Hence, this review focused on the microencapsulation of the most consumable citrus EOs with complex coacervation methods and their immobilization on commonly carried-out fabrics. In addition, it also discusses the isolation methods of the EOs, their chemical composition, and the mechanism of antibacterial action.


Subject(s)
Citrus , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Citrus/chemistry , Capsules/chemistry , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...