Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Curr Opin Virol ; 66: 101399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547562

ABSTRACT

Respiratory viral infections represent a constant threat for human health and urge for a better understanding of the pulmonary immune response to prevent disease severity. Macrophages are at the center of pulmonary immunity, where they play a pivotal role in orchestrating beneficial and/or pathological outcomes during infection. Eicosanoids, the host bioactive lipid mediators, have re-emerged as important regulators of pulmonary immunity during respiratory viral infections. In this review, we summarize the current knowledge linking eicosanoids' and pulmonary macrophages' homeostatic and antimicrobial functions and discuss eicosanoids as emerging targets for immunotherapy in viral infection.


Subject(s)
Eicosanoids , Macrophages, Alveolar , Eicosanoids/metabolism , Eicosanoids/immunology , Humans , Macrophages, Alveolar/immunology , Animals , Lung/immunology , Lung/virology , Virus Diseases/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology
3.
Nat Immunol ; 25(3): 418-431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225437

ABSTRACT

After a century of using the Bacillus Calmette-Guérin (BCG) vaccine, our understanding of its ability to provide protection against homologous (Mycobacterium tuberculosis) or heterologous (for example, influenza virus) infections remains limited. Here we show that systemic (intravenous) BCG vaccination provides significant protection against subsequent influenza A virus infection in mice. We further demonstrate that the BCG-mediated cross-protection against influenza A virus is largely due to the enrichment of conventional CD4+ effector CX3CR1hi memory αß T cells in the circulation and lung parenchyma. Importantly, pulmonary CX3CR1hi T cells limit early viral infection in an antigen-independent manner via potent interferon-γ production, which subsequently enhances long-term antimicrobial activity of alveolar macrophages. These results offer insight into the unknown mechanism by which BCG has persistently displayed broad protection against non-tuberculosis infections via cross-talk between adaptive and innate memory responses.


Subject(s)
BCG Vaccine , Influenza A virus , Orthomyxoviridae Infections , Animals , Mice , Administration, Intravenous , BCG Vaccine/immunology , Memory T Cells , Trained Immunity , Vaccination , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control
4.
Mucosal Immunol ; 16(6): 801-816, 2023 12.
Article in English | MEDLINE | ID: mdl-37659724

ABSTRACT

Cluster of differentiation (CD4+) T cells consist of multiple subtypes, defined by expression of lineage-specific transcription factors, that contribute to the control of infectious diseases by providing help to immune and nonimmune target cells. In the current study, we examined the role of B cell lymphoma (Bcl)-6, a transcriptional repressor and master regulator of T follicular helper cell differentiation, in T cell-mediated host defense against intestinal and systemic parasitic infections. We demonstrate that while Bcl-6 expression by CD4+ T cells is critical for antibody-mediated protective immunity against secondary infection with the nematode Heligmosoides polygyrus bakeri, it paradoxically compromises worm expulsion during primary infection by limiting the generation of interleukin-10 (IL-10)-producing Gata3+ T helper 2 cells. Enhanced worm expulsion in the absence of Bcl-6 expressing T cells was associated with amplified intestinal goblet cell differentiation and increased generation of alternatively activated macrophages, effects that were reversed by neutralization of IL-10 signals. An increase in IL-10 production by Bcl-6-deficient CD4+ T cells was also evident in the context of systemic Leishmania donovani infection, but in contrast to Heligmosoides polygyrus bakeri infection, compromised T helper 1-mediated liver macrophage activation and increased susceptibility to this distinct parasitic challenge. Collectively, our studies suggest that host defense pathways that protect against parasite superinfection and lethal systemic protozoal infections can be engaged at the cost of compromised primary resistance to well-tolerated helminths.


Subject(s)
Nematoda , Parasitic Diseases , Animals , Interleukin-10 , Th2 Cells
5.
Toxins (Basel) ; 15(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37505708

ABSTRACT

Host molecules with antimicrobial properties belong to a large family of mediators including type-IIA secreted phospholipase A2 (sPLA2-IIA). The latter is a potent bactericidal agent with high selectivity against Gram-positive bacteria, but it may also play a role in modulating the host inflammatory response. However, several pathogen-associated molecular patterns (PAMPs) or toxins produced by pathogenic bacteria can modulate the levels of sPLA2-IIA by either inducing or inhibiting its expression in host cells. Thus, the final sPLA2-IIA concentration during the infection process is determined by the orchestration between the levels of toxins that stimulate and those that downregulate the expression of this enzyme. The stimulation of sPLA2-IIA expression is a process that participates in the clearance of invading bacteria, while inhibition of this expression highlights a mechanism by which certain bacteria can subvert the immune response and invade the host. Here, we will review the major functions of sPLA2-IIA in the airways and the role of bacterial toxins in modulating the expression of this enzyme. We will also summarize the major mechanisms involved in this modulation and the potential consequences for the pulmonary host response to bacterial infection.


Subject(s)
Bacterial Toxins , Phospholipases A2, Secretory , Anti-Bacterial Agents/pharmacology , Group II Phospholipases A2
6.
Nature ; 614(7948): 530-538, 2023 02.
Article in English | MEDLINE | ID: mdl-36599368

ABSTRACT

Resident-tissue macrophages (RTMs) arise from embryonic precursors1,2, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15-/- mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E2 production. A compromised AM compartment resulted in increased susceptibility to acute lung injury induced by lipopolysaccharide and to pulmonary infections with influenza A virus or SARS-CoV-2. Our results highlight the complexity of prenatal RTM programming and reveal their dependency on in trans eicosanoid production by neutrophils for lifelong self-renewal.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid , Cell Self Renewal , Macrophages, Alveolar , Neutrophils , Animals , Mice , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Acute Lung Injury , Animals, Newborn , Arachidonate 12-Lipoxygenase/deficiency , Arachidonate 15-Lipoxygenase/deficiency , COVID-19 , Influenza A virus , Lipopolysaccharides , Lung/cytology , Lung/virology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/metabolism , Neutrophils/metabolism , Orthomyxoviridae Infections , Prostaglandins E , SARS-CoV-2 , Disease Susceptibility
7.
Sci Transl Med ; 14(674): eabq6682, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36475902

ABSTRACT

The lung naturally resists Aspergillus fumigatus (Af) in healthy individuals, but multiple conditions can disrupt this resistance, leading to lethal invasive infections. Core processes of natural resistance and its breakdown are undefined. We investigated three distinct conditions predisposing to lethal aspergillosis-severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection, influenza A viral pneumonia, and systemic corticosteroid use-in human patients and murine models. We found a conserved and essential coupling of innate B1a lymphocytes, Af-binding natural immunoglobulin G antibodies, and lung neutrophils. Failure of this axis concealed Af from neutrophils, allowing rapid fungal invasion and disease. Reconstituting the axis with immunoglobulin therapy reestablished resistance, thus representing a realistic pathway to repurpose currently available therapies. Together, we report a vital host resistance pathway that is responsible for protecting against life-threatening aspergillosis in the context of distinct susceptibilities.


Subject(s)
COVID-19 , Neutrophils , Humans , Animals , Mice , SARS-CoV-2 , Steroids/therapeutic use
8.
Cell Rep ; 39(12): 110974, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35732121

ABSTRACT

Severity of pulmonary viral infections, including influenza A virus (IAV), is linked to excessive immunopathology, which impairs lung function. Thus, the same immune responses that limit viral replication can concomitantly cause lung damage that must be countered by largely uncharacterized disease tolerance mechanisms. Here, we show that mitochondrial cyclophilin D (CypD) protects against IAV via disease tolerance. CypD-/- mice are significantly more susceptible to IAV infection despite comparable antiviral immunity. This susceptibility results from damage to the lung epithelial barrier caused by a reduction in interleukin-22 (IL-22)-producing natural killer (NK) cells. Transcriptomic and functional data reveal that CypD-/- NK cells are immature and have altered cellular metabolism and impaired IL-22 production, correlating with dysregulated bone marrow lymphopoiesis. Administration of recombinant IL-22 or transfer of wild-type (WT) NK cells abrogates pulmonary damage and protects CypD-/- mice after IAV infection. Collectively, these results demonstrate a key role for CypD in NK cell-mediated disease tolerance.


Subject(s)
Influenza A virus , Influenza, Human , Mitochondria , Orthomyxoviridae Infections , Animals , Peptidyl-Prolyl Isomerase F , Humans , Interleukins , Killer Cells, Natural , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Interleukin-22
9.
J Clin Invest ; 132(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35362477

ABSTRACT

Although the memory capacity of innate immune cells, termed trained immunity (TI), is a conserved evolutionary trait, the cellular and molecular mechanisms involved are incompletely understood. One fundamental question is whether the induction of TI generates a homogeneous or heterogeneous population of trained cells. In this issue of the JCI, Zhang, Moorlag, and colleagues tackle this question by combining an in vitro model system of TI with single-cell RNA sequencing. The induction of TI in human monocytes resulted in three populations with distinct transcriptomic profiles. Interestingly, the presence of lymphocytes in the microenvironment of monocytes substantially impacted TI. The authors also identified a similar population of monocytes in various human diseases or in individuals vaccinated with bacillus Calmette-Guérin. These insights warrant in-depth analysis of TI in responsive versus nonresponsive immune cells and suggest that modulating TI may provide a strategy for treating infections and inflammatory diseases.


Subject(s)
Immunity, Innate , Mycobacterium bovis , Humans , Leukocyte Count , Macrophages , Monocytes
10.
Oncogene ; 41(20): 2798-2810, 2022 05.
Article in English | MEDLINE | ID: mdl-35411033

ABSTRACT

Prostate cancer (PCa) metastases are highly enriched with genomic alterations including a gain at the 16p13.3 locus, recently shown to be associated with disease progression and poor clinical outcome. ECI1, residing at the 16p13.3 gain region, encodes Δ3, Δ2-Enoyl-CoA Delta Isomerase 1 (ECI1), a key mitochondrial fatty acid ß-oxidation enzyme. Although deregulated mitochondrial fatty acid ß-oxidation is known to drive PCa pathogenesis, the role of ECI1 in PCa is still unknown. We investigated the impacts of ECI1 on PCa phenotype in vitro and in vivo by modulating its expression in cell lines and assessed the clinical implications of its expression in human prostate tissue samples. In vitro, ECI1 overexpression increased PCa cell growth while ECI1 deficiency reduced its growth. ECI1 also enhanced colony formation, cell motility, and maximal mitochondrial respiratory capacity. In vivo, PCa cells stably overexpressing ECI1 injected orthotopically in nude mice formed larger prostate tumors with higher number of metastases. Immunohistochemistry analysis of the human tissue microarray representing 332 radical prostatectomy cases revealed a stronger ECI1 staining in prostate tumors compared to corresponding benign tissues. ECI1 expression varied amongst tumors and was higher in cases with 16p13.3 gain, high Gleason grade, and advanced tumor stage. ECI1 overexpression was a strong independent predictor of biochemical recurrence after adjusting for known clinicopathologic parameters (hazard ratio: 3.65, P < 0.001) or the established CAPRA-S score (hazard ratio: 3.95, P < 0.001). ECI1 overexpression was also associated with significant increased risk of distant metastasis and reduced overall survival. Overall, this study demonstrates the functional capacity of ECI1 in PCa progression and highlights the clinical implication of ECI1 as a potential target for the management of PCa.


Subject(s)
Dodecenoyl-CoA Isomerase , Prostatic Neoplasms , Animals , Dodecenoyl-CoA Isomerase/genetics , Fatty Acids , Humans , Male , Mice , Mice, Nude , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
11.
Cell Rep ; 38(10): 110502, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35235831

ABSTRACT

Since the vast majority of species solely rely on innate immunity for host defense, it stands to reason that a critical evolutionary trait like immunological memory evolved in this primitive branch of our immune system. There is ample evidence that vaccines such as bacillus Calmette-Guérin (BCG) induce protective innate immune memory responses (trained immunity) against heterologous pathogens. Here we show that while BCG vaccination significantly reduces morbidity and mortality against influenza A virus (IAV), it fails to provide protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In contrast to IAV, SARS-CoV-2 infection leads to unique pulmonary vasculature damage facilitating viral dissemination to other organs, including the bone marrow (BM), a central site for BCG-mediated trained immunity. Finally, monocytes from BCG-vaccinated individuals mount an efficient cytokine response to IAV infection, while this response is minimal following SARS-CoV-2. Collectively, our data suggest that the protective capacity of BCG vaccination is contingent on viral pathogenesis and tissue tropism.


Subject(s)
COVID-19 , Influenza A virus , BCG Vaccine , COVID-19/prevention & control , Humans , Immunity, Innate , SARS-CoV-2 , Vaccination
12.
Front Immunol ; 13: 1044592, 2022.
Article in English | MEDLINE | ID: mdl-36776396

ABSTRACT

Pulmonary macrophages have two distinct ontogenies: long-lived embryonically-seeded alveolar macrophages (AM) and bone marrow-derived macrophages (BMDM). Here, we show that after infection with a virulent strain of Mycobacterium tuberculosis (H37Rv), primary murine AM exhibit a unique transcriptomic signature characterized by metabolic reprogramming distinct from conventional BMDM. In contrast to BMDM, AM failed to shift from oxidative phosphorylation (OXPHOS) to glycolysis and consequently were unable to control infection with an avirulent strain (H37Ra). Importantly, healthy human AM infected with H37Ra equally demonstrated diminished energetics, recapitulating our observation in the murine model system. However, the results from seahorse showed that the shift towards glycolysis in both AM and BMDM was inhibited by H37Rv. We further demonstrated that pharmacological (e.g. metformin or the iron chelator desferrioxamine) reprogramming of AM towards glycolysis reduced necrosis and enhanced AM capacity to control H37Rv growth. Together, our results indicate that the unique bioenergetics of AM renders these cells a perfect target for Mtb survival and that metabolic reprogramming may be a viable host targeted therapy against TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Macrophages, Alveolar/metabolism , Tuberculosis/microbiology , Macrophages/microbiology , Necrosis/metabolism
13.
Cell ; 183(3): 752-770.e22, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33125891

ABSTRACT

A greater understanding of hematopoietic stem cell (HSC) regulation is required for dissecting protective versus detrimental immunity to pathogens that cause chronic infections such as Mycobacterium tuberculosis (Mtb). We have shown that systemic administration of Bacille Calmette-Guérin (BCG) or ß-glucan reprograms HSCs in the bone marrow (BM) via a type II interferon (IFN-II) or interleukin-1 (IL1) response, respectively, which confers protective trained immunity against Mtb. Here, we demonstrate that, unlike BCG or ß-glucan, Mtb reprograms HSCs via an IFN-I response that suppresses myelopoiesis and impairs development of protective trained immunity to Mtb. Mechanistically, IFN-I signaling dysregulates iron metabolism, depolarizes mitochondrial membrane potential, and induces cell death specifically in myeloid progenitors. Additionally, activation of the IFN-I/iron axis in HSCs impairs trained immunity to Mtb infection. These results identify an unanticipated immune evasion strategy of Mtb in the BM that controls the magnitude and intrinsic anti-microbial capacity of innate immunity to infection.


Subject(s)
Hematopoietic Stem Cells/microbiology , Immunity , Mycobacterium tuberculosis/physiology , Myelopoiesis , Animals , Bone Marrow Cells/metabolism , Cell Proliferation , Disease Susceptibility , Homeostasis , Interferon Type I/metabolism , Iron/metabolism , Kinetics , Lung/microbiology , Lung/pathology , Macrophages/immunology , Mice, Inbred C57BL , Myeloid Cells/metabolism , Necrosis , Signal Transduction , Transcription, Genetic , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/pathology
14.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31896640

ABSTRACT

Biofilms produced by Pseudomonas aeruginosa present a serious threat to cystic fibrosis patients. Here, we report the draft genome sequences of four cystic fibrosis isolates displaying various mucoid and biofilm phenotypes. The estimated average genome size was about 6,255,986 ± 50,202 bp with a mean G+C content of 66.52 ± 0.06%.

15.
J Allergy Clin Immunol ; 144(4): 945-961.e9, 2019 10.
Article in English | MEDLINE | ID: mdl-31356919

ABSTRACT

BACKGROUND: Inhaled oxidative toxicants present in ambient air cause airway epithelial injury, inflammation, and airway hyperresponsiveness. Effective adaptation to such environmental insults is essential for the preservation of pulmonary function, whereas failure or incomplete adaptation to oxidative injury can render the host susceptible to the development of airway disease. OBJECTIVE: We sought to explore the mechanisms of airway adaptation to oxidative injury. METHODS: For a model to study pulmonary adaptation to oxidative stress-induced lung injury, we exposed mice to repeated nose-only chlorine gas exposures. Outcome measures were evaluated 24 hours after the last chlorine exposure. Lung mechanics and airway responsiveness to methacholine were assessed by using the flexiVent. Inflammation and antioxidant responses were assessed in both bronchoalveolar lavage fluid and lung tissue. Using both loss or gain of function and genomic approaches, we further dissected the cellular and molecular mechanisms involved in pulmonary adaptation. RESULTS: Repeated exposures to oxidative stress resulted in pulmonary adaptation evidenced by abrogation of neutrophilic inflammation and airway hyperresponsiveness. This adaptation was independent of antioxidant mechanisms and regulatory T cells but dependent on residential alveolar macrophages (AMs). Interestingly, 5% of AMs expressed forkhead box P3, and depletion of these cells abolished adaptation. Results from transcriptomic profiling and loss and gain of function suggest that adaptation might be dependent on TGF-ß and prostaglandin E2. CONCLUSION: Pulmonary adaptation during oxidative stress-induced lung injury is mediated by a novel subset of forkhead box P3-positive AMs that limits inflammation, favoring airway adaptation and host fitness through TGF-ß and prostaglandin E2.


Subject(s)
Adaptation, Physiological/physiology , Macrophages, Alveolar/metabolism , Oxidative Stress/immunology , Respiratory Hypersensitivity/metabolism , Animals , Chlorine/toxicity , Dinoprostone/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Irritants/toxicity , Lung Injury/chemically induced , Lung Injury/immunology , Lung Injury/metabolism , Macrophages, Alveolar/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oxidative Stress/drug effects , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/immunology , Transforming Growth Factor beta/metabolism
16.
Immunol Cell Biol ; 97(9): 799-814, 2019 10.
Article in English | MEDLINE | ID: mdl-31187539

ABSTRACT

Systemic lupus erythematosus (SLE) is characterized by the development of autoantibodies against diverse self-antigens with damage to multiple organs. Immunization with the SLE autoantigen ß2 -glycoprotein I (ß2 GPI) and lipopolysaccharide (LPS), a known trigger of necroptosis, induces a murine model of SLE. We hypothesized that necroptotic cells, like apoptotic cells, provide a "scaffold" of cellular self-antigens, but, unlike apoptotic cells, necroptotic cells do so in a proinflammatory and immunogenic context. We demonstrate that ß2 GPI indeed binds to necroptotic cells and serves as a target for anti-ß2 GPI autoantibodies. We further demonstrate that necroptotic, but not apoptotic, cells promote antigenic presentation of ß2 GPI to CD4 T cells by dendritic cells. Finally, we show that ß2 GPI/LPS-immunized mice deficient in RIPK3 (receptor-interacting serine/threonine-protein kinase 3) or MLKL (mixed lineage kinase domain like), and consequently unable to undergo necroptosis, have reduced SLE autoantibody production and pathology. RIPK3-/- mice had low levels of SLE autoantibodies and no renal pathology, while MLKL-/- mice produced low levels of SLE autoantibodies initially, but later developed levels comparable with wild type (WT) mice and pathology intermediate to that of WT and RIPK3-/- mice. Serum cytokine levels induced by LPS tended to be lower in RIPK3-/- and MLKL-/- mice than in WT mice, suggesting that impaired proinflammatory cytokine production may impact the initiation of autoantibody production in both strains. Our data suggest that self-antigen (i.e. ß2 GPI) presented in the context of necroptosis and proinflammatory signals may be sufficient to overcome immune tolerance and induce SLE.


Subject(s)
Autoantigens/immunology , Lupus Erythematosus, Systemic/immunology , Necroptosis/immunology , beta 2-Glycoprotein I/metabolism , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/metabolism , Apoptosis , Autoantibodies/immunology , Cell Line , Cytokines/metabolism , Dendritic Cells/metabolism , Histocompatibility Antigens Class II/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Protein Binding , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
17.
Nat Microbiol ; 4(8): 1389-1400, 2019 08.
Article in English | MEDLINE | ID: mdl-31110361

ABSTRACT

Host defence against influenza A virus (IAV) infection depends not only on host resistance to eliminate the virus, but also disease tolerance to limit lung tissue damage and maintain pulmonary function. Fatal IAV infections are frequently the result of a maladaptive immune response that compromises disease tolerance rather than host resistance to infection. Here, we show that the leukotriene B4 (LTB4)-type I interferon (IFN) axis promotes a distinct mechanism of disease tolerance to pulmonary IAV infection. We demonstrate that mice genetically deficient in LTB4 signalling (Blt1R-/-) are more susceptible to IAV infection compared to control mice, despite similar pulmonary viral loads. The increased susceptibility of Blt1R-/- mice is associated with an accumulation of inflammatory monocyte-derived macrophages (IMMs) causing increased lung immunopathology. We mechanistically define that LTB4 signalling via the BLT1 receptor enhances the activation of the type I IFN-α/ß receptor (IFNAR)/ and signal transducer and activator of transcription 1 (STAT1), which leads to IFN-α production by interstitial macrophages to suppresse in situ IMM proliferation. Importantly, the delivery of a single dose of LTB4 at the peak viral load reduces IMM proliferation, controls tissue damage and increases survival without affecting host resistance to IAV. These results reveal an unexpected anti-inflammatory role of LTB4 in disease tolerance to IAV infection.


Subject(s)
Immune Tolerance , Immunity, Innate/immunology , Influenza, Human/immunology , Interferon Type I/metabolism , Leukotriene B4/metabolism , Macrophages/metabolism , Animals , Cell Death , Cell Line , Cell Proliferation , Humans , Influenza A virus/immunology , Influenza, Human/pathology , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, CCR2/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction
18.
Microbes Infect ; 20(9-10): 560-569, 2018.
Article in English | MEDLINE | ID: mdl-29679740

ABSTRACT

Influenza A virus (IAV) is a pulmonary pathogen, responsible for significant yearly morbidity and mortality. Due to the absence of highly effective antiviral therapies and vaccine, as well as the constant threat of an emerging pandemic strain, there is considerable need to better understand the host-pathogen interactions and the factors that dictate a protective versus detrimental immune response to IAV. Even though evidence of IAV-induced cell death in human pulmonary epithelial and immune cells has been observed for almost a century, very little is known about the consequences of cell death on viral pathogenesis. Recent study indicates that both the type of cell death program and its kinetics have major implications on host defense and survival. In this review, we discuss advances in our understanding of cell death programs during influenza virus infection, in hopes of fostering new areas of investigation for targeted clinical intervention.


Subject(s)
Cell Death , Host-Pathogen Interactions/immunology , Influenza A virus/physiology , Influenza, Human/immunology , Alveolar Epithelial Cells/pathology , Animals , Humans , Kinetics , Macrophages, Alveolar/pathology , Orthomyxoviridae Infections/immunology
19.
Cell ; 172(1-2): 176-190.e19, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328912

ABSTRACT

The dogma that adaptive immunity is the only arm of the immune response with memory capacity has been recently challenged by several studies demonstrating evidence for memory-like innate immune training. However, the underlying mechanisms and location for generating such innate memory responses in vivo remain unknown. Here, we show that access of Bacillus Calmette-Guérin (BCG) to the bone marrow (BM) changes the transcriptional landscape of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), leading to local cell expansion and enhanced myelopoiesis at the expense of lymphopoiesis. Importantly, BCG-educated HSCs generate epigenetically modified macrophages that provide significantly better protection against virulent M. tuberculosis infection than naïve macrophages. By using parabiotic and chimeric mice, as well as adoptive transfer approaches, we demonstrate that training of the monocyte/macrophage lineage via BCG-induced HSC reprogramming is sustainable in vivo. Our results indicate that targeting the HSC compartment provides a novel approach for vaccine development.


Subject(s)
Hematopoietic Stem Cells/immunology , Immunity, Innate , Immunologic Memory , Mycobacterium bovis/immunology , Transcriptome , Animals , Cell Line , Cells, Cultured , Epigenesis, Genetic , Hematopoiesis , Mice , Mice, Inbred C57BL , Tuberculosis/immunology
20.
PLoS Pathog ; 13(4): e1006326, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28410401

ABSTRACT

The type I interferon pathway plays a critical role in both host defense and tolerance against viral infection and thus requires refined regulatory mechanisms. RIPK3-mediated necroptosis has been shown to be involved in anti-viral immunity. However, the exact role of RIPK3 in immunity to Influenza A Virus (IAV) is poorly understood. In line with others, we, herein, show that Ripk3-/- mice are highly susceptible to IAV infection, exhibiting elevated pulmonary viral load and heightened morbidity and mortality. Unexpectedly, this susceptibility was linked to an inability of RIKP3-deficient macrophages (Mφ) to produce type I IFN in the lungs of infected mice. In Mφ infected with IAV in vitro, we found that RIPK3 regulates type I IFN both transcriptionally, by interacting with MAVS and limiting RIPK1 interaction with MAVS, and post-transcriptionally, by activating protein kinase R (PKR)-a critical regulator of IFN-ß mRNA stability. Collectively, our findings indicate a novel role for RIPK3 in regulating Mφ-mediated type I IFN anti-viral immunity, independent of its conventional role in necroptosis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Influenza A virus/physiology , Influenza, Human/metabolism , Interferon-beta/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/virology , Interferon-beta/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...