Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047078

ABSTRACT

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Subject(s)
COVID-19 , Animals , Humans , Zebrafish/metabolism , SARS-CoV-2/metabolism , Cytokine Release Syndrome , Cytokines/metabolism , RNA, Messenger , Membrane Proteins , Mitochondrial Proteins
2.
Biologicals ; 49: 62-68, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28666719

ABSTRACT

Stem cells from human exfoliated deciduous teeth (SHED) have great therapeutic potential and here, by the first time, we evaluated their immunomodulatory effect on experimental model of autoimmune encephalomyelitis (EAE). Specifically, we investigated the effect of SHED administration on clinical signs and cellular patterns in EAE model using Foxp3 GFP + transgenic mice (C57Bl/6-Foxp3GFP). The results showed that SHED infusion ameliorated EAE clinical score with reduced number of infiltrating IFN-γ+CD8+, IL-4+CD8+, IFN-γ+CD4+ and IL-4+CD4+ T cells into the central nervous system (CNS). In addition, we observed that SHED promoted a significant increase in CD4+FOXP3+ T cells population in the spleen of EAE-affected animals. Taken together, our results provide strong evidence that SHED can modulate peripherally the CD4+ T cell responses suggesting that SHED would be explored as part of cellular therapy in autoimmune diseases associated with CNS.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Stem Cell Transplantation , Stem Cells , Tooth, Deciduous/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Heterografts , Humans , Mice , Mice, Transgenic , Stem Cells/immunology , Stem Cells/pathology , Tooth, Deciduous/pathology
3.
Nutr Res ; 41: 73-85, 2017 May.
Article in English | MEDLINE | ID: mdl-28506517

ABSTRACT

Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) are known to modulate a variety of immune cell functions. On occasion, this has led to diminished host resistance to certain viral and bacterial infections. Little is known about the impact of n-3 PUFA on host resistance to parasitic infection, however, based on results from a small study conducted more than two decades ago, we hypothesized that providing mice LC n-3 PUFA will diminish host resistance to Trypanosoma cruzi, the parasitic pathogen responsible for Chagas disease. To investigate this, C57BL/6 mice were supplemented by gavage (0.6% v/w) with phosphate-buffered saline, corn oil (CO), or menhaden fish oil (FO, a fat source rich in LC n-3 PUFA) for 15 days prior to T cruzi (Y strain) challenge and throughout the acute phase of infection. FO supplementation was associated with a transient 2-fold greater peak of blood parasitemia at 7 days postinfection (dpi), whereas subsequent cardiac parasitemia was ~60% lower at 12 dpi. FO treatment also ameliorated the leukopenia and thrombocytopenia observed in the early stages of a T cruzi infection. FO supplementation reduced circulating and cardiac nitric oxide at 7 and 12 dpi, respectively. FO supplementation altered ex vivo prostaglandin E2 and cytokine and chemokine production by splenocytes isolated from uninfected and infected mice. Overall, our results suggest that oral administration of LC n-3 PUFA from FO can have beneficial effects on the host in the early course of a T cruzi infection.


Subject(s)
Dietary Supplements , Fish Oils/administration & dosage , Parasitic Diseases/drug therapy , Trypanosoma cruzi/drug effects , Acute Disease , Animals , Antigens, Protozoan/blood , Chronic Disease , Corn Oil/administration & dosage , Dinoprostone/metabolism , Fatty Acids, Omega-3/administration & dosage , Female , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Spleen/cytology , Spleen/drug effects , Spleen/metabolism
4.
Chem Biol Interact ; 256: 1-8, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27287419

ABSTRACT

Chronic pain is a major health problem worldwide. We have recently demonstrated the analgesic effect of the nitroxyl donor, Angeli's salt (AS) in models of inflammatory pain. In the present study, the acute and chronic analgesic effects of AS was investigated in chronic constriction injury of the sciatic nerve (CCI)-induced neuropathic pain in mice. Acute (7th day after CCI) AS treatment (1 and 3 mg/kg; s.c.) reduced CCI-induced mechanical, but not thermal hyperalgesia. The acute analgesic effect of AS was prevented by treatment with 1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor), KT5823 (an inhibitor of protein kinase G [PKG]) or glibenclamide (GLB, an ATP-sensitive potassium channel blocker). Chronic (7-14 days after CCI) treatment with AS (3 mg/kg, s.c.) promoted a sustained reduction of CCI-induced mechanical and thermal hyperalgesia. Acute AS treatment reduced CCI-induced spinal cord allograft inflammatory factor 1 (known as Iba-1), interleukin-1ß (IL-1ß), and ST2 receptor mRNA expression. Chronic AS treatment reduced CCI-induced spinal cord glial fibrillary acidic protein (GFAP), Iba-1, IL-1ß, tumor necrosis factor-α (TNF-α), interleukin-33 (IL-33) and ST2 mRNA expression. Chronic treatment with AS (3 mg/kg, s.c.) did not alter aspartate aminotransferase, alanine aminotransferase, urea or creatinine plasma levels. Together, these results suggest that the acute analgesic effect of AS depends on activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. Moreover, chronic AS diminishes CCI-induced mechanical and thermal hyperalgesia by reducing the activation of spinal cord microglia and astrocytes, decreasing TNF-α, IL-1ß and IL-33 cytokines expression. This spinal cord immune modulation was more prominent in the chronic treatment with AS. Thus, nitroxyl limits CCI-induced neuropathic pain by reducing spinal cord glial cells activation.


Subject(s)
Analgesics/therapeutic use , Neuralgia/drug therapy , Neuroprotective Agents/therapeutic use , Nitrogen Oxides/therapeutic use , Sciatic Nerve/drug effects , Adenosine Triphosphate/metabolism , Analgesics/administration & dosage , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/genetics , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Interleukin-1beta/genetics , Interleukin-33/genetics , Male , Mice , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neuralgia/genetics , Neuralgia/metabolism , Neuralgia/physiopathology , Neuroprotective Agents/administration & dosage , Nitrogen Oxides/administration & dosage , Sciatic Nerve/physiopathology , Signal Transduction/drug effects , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/physiopathology , Tumor Necrosis Factor-alpha/genetics
5.
Immunology ; 133(1): 123-32, 2011 May.
Article in English | MEDLINE | ID: mdl-21355864

ABSTRACT

Dendritic cells (DCs) play an important role in the clearance of apoptotic cells. The removal of apoptotic cells leads to peripheral tolerance, although their role is still not clear. We show that the uptake of apoptotic thymocytes by DCs converts these cells into tolerogenic DCs resistant to maturation by lipopolysaccharide, modulating the production of interleukin-12 and up-regulating the expression of transforming growth factor-ß(1) latency associated peptide. We also observed that DCs pulsed with apoptotic cells in the allogeneic context were more efficient in the expansion of regulatory T cells (Tregs), and that this expansion requires contact between DCs and the T cell. The Tregs sorted from in vitro culture suppressed the proliferation of splenocytes in vitro in a specific and non-specific manner. In the in vivo model, the transfer of CD4(+) CD25(-) cells to Nude mice induced autoimmunity, with cell infiltrate found in the stomach, colon, liver and kidneys. The co-transfer of CD4(+) CD25(-) and CD4(+) CD25(+) prevented the presence of cell infiltrates in several organs and increased the total cell count in lymph nodes. Our data indicate that apoptotic cells have an important role in peripheral tolerance via induction of tolerogenic DCs and CD4(+) CD25(+) Foxp3(+) cells that present regulatory functions.


Subject(s)
Apoptosis/immunology , Dendritic Cells/immunology , Immune Tolerance/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Separation , Female , Flow Cytometry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
6.
J Gene Med ; 13(3): 148-57, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21344541

ABSTRACT

BACKGROUND: Metastatic renal cell carcinoma (mRCC) is one of the most treatment-resistant malignancies. Despite all new therapeutic advances, almost all patients develop resistance to treatment and cure is rarely seen. In the present study, we evaluated the antitumor effect of a bicistronic retrovirus vector encoding both endostatin (ES) and interleukin (IL)-2 using an orthotopic metastatic RCC mouse model. METHODS: Balb/C-bearing Renca cells were treated with NIH/3T3-LendIRES-IL-2-SN cells. In the survival studies, mice were monitored daily until they died. At the end of the in vivo experiment, serum levels of IL-2 and ES were measured, the lung was weighed, and the number of metastatic nodules, nodule area, tumor vessels and proliferation of tumor-infiltrating Renca cells were determined. RESULTS: Inoculation of NIH/3T3-LendIRES-IL-2-SN cells resulted in an increase in ES and IL-2 levels in the treated group (p < 0.05). There was a significant decrease in lung wet weight, lung nodule area and tumor vessels in the treated group compared to the control group (p < 0.001). The proliferation of Renca cells in the bicistronic-treated group was significantly reduced compared to the control group (p < 0.05). Kaplan-Meier survival curves showed that the probability of survival was significantly higher for mice submitted to bicistronic therapy (log-rank test, p = 0.0016). Bicistronic therapy caused an increase in the infiltration of CD4, CD4 interferon (IFN)γ-producing, CD8, CD8 IFNγ-producing and natural killer (CD49b) cells. CONCLUSIONS: Retroviral bicistronic gene transfer led to the secretion of functional ES and IL-2 that was sufficiently active to: (i) inhibit tumor angiogenesis and tumor cell proliferation and (ii) increase the infiltration of immune cells.


Subject(s)
Carcinoma, Renal Cell/therapy , Endostatins/genetics , Genetic Therapy , Interleukin-2/genetics , Kidney Neoplasms/therapy , Lung Neoplasms/secondary , Animals , Carcinoma, Renal Cell/blood supply , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/secondary , Cell Line , Cell Proliferation , Disease Models, Animal , Endostatins/blood , Endostatins/metabolism , Genetic Vectors/genetics , Humans , Interleukin-2/blood , Interleukin-2/metabolism , Kaplan-Meier Estimate , Kidney Neoplasms/blood supply , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Lung Neoplasms/blood supply , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Male , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/prevention & control , Random Allocation , Retroviridae/genetics , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL