Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37763221

ABSTRACT

ADPKD is the most common genetic renal disease, characterized by the presence of multiple cysts which, through slow and gradual growth, lead to glomerular filtration rate (GFR) decline and end-stage renal disease. Cystic growth is associated with increased intracellular levels of 3',5'-cyclic adenosine monophosphate (cAMP). Extracellular vesicles (EVs) are proposed to participate in "remote sensing" by transporting different cargoes, but their relevance to ADPKD progression is poorly understood. This study aimed to determine whether cAMP is contained in urinary EVs and, if so, how total and/or EV cAMP contents participate in disease progression. Fourteen ADPKD patients, naïve for V2 receptor antagonism treatment, and seven controls were studied. Progression was evaluated by estimating GFR (eGFR) and height-adjusted total kidney volume (htTKV). Fresh morning urine was collected to determine cAMP by the competitive radioligand assay. Urine EVs were isolated using an adapted centrifugation method and characterized by electron microscopy, dynamic light scanning, flow cytometry with FITC CD63 labeling, protein and RNA content, and AQP2 and GAPDH mRNA detection. Total and EV cAMP was measurable in both control and patient urine samples. Total cAMP was significantly correlated with eGFR and its annual change but inversely correlated with htTKV. The cAMP-EVs showed a bimodal pattern with htTKV, increasing to ~1 L/m and falling at larger sizes. Our results demonstrate that urine cAMP correlates with ADPKD progression markers, and that its extracellular delivery by EVs could reflect the architectural disturbances of the organ.

2.
Toxicol Appl Pharmacol ; 450: 116170, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35843342

ABSTRACT

Multidrug resistance (MDR) transporters present in placenta and fetal tissues reduce intracellular accumulation of their substrates. Consequently, induction of protein expression may further reduce toxic effects of specific xenobiotics. This work aimed to study whether sustained drug treatments in utero could modulate MDR transporters P-gp, BCRP, and MRP2 and thus impact their fetoprotective action. Pregnant Sprague-Dawley rats were daily treated by gavage with zidovudine (AZT, 60 mg/kg) or lamivudine (3TC, 30 mg/kg) from gestation day (GD) 11 to 20. On GD 21, DNA damage and MDR protein abundance were assessed by comet assay and western blotting, respectively. Moreover, a single IV dose of AZT or 3TC was administered on GD 21 and drug concentrations were measured in maternal blood and fetal liver by HPLC-UV. Chronic exposure to 3TC caused significantly higher DNA damage than AZT in fetal liver cells, whereas no differences were observed in maternal blood cells. Increased levels of BCRP protein were found in the placenta and fetal liver after AZT, but not 3TC, chronic in utero exposure. Contrarily, no modifications in the protein abundance of P-gp or MRP2 were found after sustained exposure to these drugs. The area under the curve of AZT in fetal liver was significantly lower in the AZT-pretreated rats than in the VEH or 3TC groups. Moreover, pre-administration of the BCRP inhibitor gefitinib (20 mg/kg, IP) increased AZT levels to the values observed in the VEH-treated group in this tissue. On the other hand, the disposition of 3TC in maternal blood or fetal liver was not modified after chronic treatment in either group. In conclusion, chronic exposure to AZT selectively induces BCRP expression in the placenta and fetal liver decreasing its own accumulation which may account for the lower DNA damage observed for AZT compared to 3TC in fetal liver cells.


Subject(s)
Anti-HIV Agents , Reverse Transcriptase Inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Animals , Anti-HIV Agents/pharmacology , Drug Resistance, Multiple , Female , Fetus , Lamivudine/toxicity , Neoplasm Proteins , Placenta , Pregnancy , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/pharmacology , Zidovudine/toxicity
4.
Toxicol Appl Pharmacol ; 330: 74-83, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28705594

ABSTRACT

Safety concerns for fetus development of zidovudine (AZT) administration as prophylaxis of vertical transmission of HIV persist. We evaluated the participation of the ATP-binding cassette efflux transporter ABCG2 in the penetration of AZT into the fetal brain and the relevance for drug safety. Oral daily doses of AZT (60mg/kg body weight) or its vehicle were administered between post gestational days 11 (E11) and 20 (E20) to Sprague-Dawley pregnant rats. At E21, animals received an intravenous bolus of 60mg AZT/kg body weight in the presence or absence of the ABCG2 inhibitor gefitinib (20mg/kg body weight, ip) and AZT in maternal plasma and fetal brain were measured by HPLC-UV. ABCG2 protein expression in placenta and fetal brain, as well as mitochondrial function and ultrastructure in fetal brain were also analyzed. In utero chronic exposure to AZT markedly induced ABCG2 expression in placenta and fetal brain whereas did not significantly alter mitochondrial functionality in the fetal brain. The area-under-the-concentration-time-curve of AZT significantly decreased in fetal brains isolated from AZT-exposed fetuses compared to control group, but this effect was abolished by ABCG2 inhibition. Our results suggest that the absence of mitochondrial toxicity in the fetal brain after chronic in utero administration of AZT could be attributed to its low accumulation in the tissue caused, at least in part, by ABCG2 overexpression. We propose that any interference with ABCG2 activity due to genetic, pathological or iatrogenic factors would increase the amount of AZT reaching the fetal brain, which could increase the risk of toxicity of this drug on the tissue.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis , Anti-HIV Agents/pharmacokinetics , Brain/metabolism , Reverse Transcriptase Inhibitors/pharmacokinetics , Zidovudine/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Animals , Anti-HIV Agents/pharmacology , Biological Availability , Brain/drug effects , Female , Fetus/drug effects , Fetus/metabolism , Gefitinib , Lipid Peroxidation/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Pregnancy , Quinazolines/pharmacology , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/pharmacology , Zidovudine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...