Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36363098

ABSTRACT

High-N Ni-free stainless steels are used for their excellent mechanical properties combined with their high corrosion resistance, especially for biomedical applications. Even though it is well-known that secondary hardening during annealing after cold working has been observed in many materials, this phenomenon was not reported for these materials, one of the best known being Biodur108©, although numerous efforts have been made to increase its hardness. In this work, thermomechanical treatments at low temperature of cold-deformed Biodur108© were conducted to increase the hardness. Hardness as high as 830 Hv was obtained. For this material, the annealing of a deformed sample at intermediate temperature leads to a secondary hardening phenomenon. The mechanisms responsible for this secondary hardening were analyzed. It was found that for deformed samples, annealing at 575 °C leads to the formation of small Cr2N precipitates along grain boundaries and sub-grain boundaries, and simultaneously with a new body-centered cubic (BCC) phase that possesses a super structure. The newly formed phases have sub-micrometric grain sizes.

2.
Proc Inst Mech Eng H ; 236(8): 1106-1117, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35778813

ABSTRACT

Matrix Gla protein (MGP) is mostly known to be a calcification inhibitor, as its absence leads to ectopic calcification of different tissues such as cartilage or arteries. MGP deficiency also leads to low bone mass and delayed bone growth. In the present contribution, we investigate the effect of MGP deficiency on the structural and material mechanical bone properties by focusing on the elastic response of femurs undergoing three-points bending. To this aim, biomechanical tests are performed on femurs issued from Mgp-deficient mice at 14, 21, 28, and 35 days of postnatal life and compared to healthy control femurs. µCT acquisitions enable to reconstruct bone geometries and are used to construct subject-specific finite element models avoiding some of the reported limitations concerning the use of beam-like assumptions for small bone samples. Our results indicate that MGP deficiency may be associated to differences in both structural and material properties of femurs during early stages of development. MGP deficiency appears to be related to a decrease in bone dimensions, compensated by higher material properties resulting in similar structural bone properties at P35. The search for a unique density-elasticity relationship based on calibrated bone mineral density (BMD) indicates that MGP deficiency may affect bone tissue in several ways, that may not be represented uniquely from the quantification of BMD. Despite of its limitation to elastic response, the present preliminary study reports for the very first time the mechanical skeletal properties of Mgp-deficient mice at early stages of development.


Subject(s)
Calcium-Binding Proteins , Extracellular Matrix Proteins , Femur , Animals , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/genetics , Cartilage/metabolism , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Femur/diagnostic imaging , Femur/physiopathology , Mice , Matrix Gla Protein
SELECTION OF CITATIONS
SEARCH DETAIL