Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37373166

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by ventricular arrhythmias, contractile dysfunctions and fibro-adipose replacement of myocardium. Cardiac mesenchymal stromal cells (CMSCs) participate in disease pathogenesis by differentiating towards adipocytes and myofibroblasts. Some altered pathways in ACM are known, but many are yet to be discovered. We aimed to enrich the understanding of ACM pathogenesis by comparing epigenetic and gene expression profiles of ACM-CMSCs with healthy control (HC)-CMSCs. Methylome analysis identified 74 differentially methylated nucleotides, most of them located on the mitochondrial genome. Transcriptome analysis revealed 327 genes that were more expressed and 202 genes that were less expressed in ACM- vs. HC-CMSCs. Among these, genes implicated in mitochondrial respiration and in epithelial-to-mesenchymal transition were more expressed, and cell cycle genes were less expressed in ACM- vs. HC-CMSCs. Through enrichment and gene network analyses, we identified differentially regulated pathways, some of which never associated with ACM, including mitochondrial functioning and chromatin organization, both in line with methylome results. Functional validations confirmed that ACM-CMSCs exhibited higher amounts of active mitochondria and ROS production, a lower proliferation rate and a more pronounced epicardial-to-mesenchymal transition compared to the controls. In conclusion, ACM-CMSC-omics revealed some additional altered molecular pathways, relevant in disease pathogenesis, which may constitute novel targets for specific therapies.


Subject(s)
Mesenchymal Stem Cells , Myocardium , Humans , Mesenchymal Stem Cells/metabolism , Adipocytes , Homeostasis , Chromatin/genetics , Chromatin/metabolism
2.
Cardiovasc Diabetol ; 21(1): 51, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35397526

ABSTRACT

BACKGROUND: Glucagon like peptide-1 receptor agonists (GLP-1RAs) have shown to reduce mortality and cardiovascular events in patients with type 2 diabetes mellitus (T2DM). Since the impairment in number and function of vasculotrophic circulating CD34+ hematopoietic stem progenitor cells (HSPCs) in T2D has been reported to increase cardiovascular (CV) risk, we hypothesized that one of the mechanisms whereby GLP-1 RAs exert CV protective effects may be related to the ability to improve CD34+ HSPC function. METHODS: In cord blood (CB)-derived CD34+ HSPC, the expression of GLP-1 receptor (GLP-1R) mRNA, receptor protein and intracellular signaling was evaluated by RT-qPCR and Western Blot respectively. CD34+ HSPCs were exposed to high glucose (HG) condition and GLP-1RA liraglutide (LIRA) was added before as well as after functional impairment. Proliferation, CXCR4/SDF-1α axis activity and intracellular ROS production of CD34+ HSPC were evaluated. RESULTS: CD34+ HSPCs express GLP-1R at transcriptional and protein level. LIRA treatment prevented and rescued HSPC proliferation, CXCR4/SDF-1α axis activity and metabolic imbalance from HG-induced impairment. LIRA stimulation promoted intracellular cAMP accumulation as well as ERK1/2 and AKT signaling activation. The selective GLP-1R antagonist exendin (9-39) abrogated LIRA-dependent ERK1/2 and AKT phosphorylation along with the related protective effects. CONCLUSION: We provided the first evidence that CD34+ HSPC express GLP-1R and that LIRA can favorably impact on cell dysfunction due to HG exposure. These findings open new perspectives on the favorable CV effects of GLP-1 RAs in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Liraglutide , Chemokine CXCL12 , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucose/toxicity , Humans , Hypoglycemic Agents/pharmacology , Liraglutide/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Stem Cells/metabolism
3.
Diagnostics (Basel) ; 11(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924082

ABSTRACT

The 2019 Coronavirus disease (COVID-19) outbreak had detrimental effects on essential medical services such as organ and tissue donation. Lombardy, one of the most active Italian regions in organ/tissue procurement, has been strongly affected by the COVID-19 pandemic. To date, data concerning the risk of SARS-CoV-2 transmission after tissue transplantation are controversial. Here, we aimed to evaluate the presence/absence of SARS-CoV-2 in different cardiac tissues eligible for transplantation obtained from Lombard donors. We used cardiovascular tissues from eight donors potentially suitable for pulmonary valve transplantation. All donor subjects involved in the study returned negative results for the SARS-CoV-2 RNA molecular tests (quantitative real-time reverse-transcription PCR, qRT-PCR, and chip-based digital PCR) in nasopharyngeal swabs (NPS) or bronchoalveolar lavage (BAL). None of the eight donors included in this study revealed the presence of the SARS-CoV-2 viral genome. However, evaluation of the protein content of pulmonary vein wall (PVW) tissue revealed variable levels of SARS-CoV-2 nucleoprotein signal in all donors. Our study demonstrated for the first time, to the best of our knowledge, that viral nucleoprotein but not viral RNA was present in the examined tissue bank specimens, suggesting the need for caution and in-depth investigations on implantable tissue specimens collected during the COVID-19 pandemic period.

4.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800912

ABSTRACT

Arrhythmogenic Cardiomyopathy (ACM) is characterized by the replacement of the myocardium with fibrotic or fibro-fatty tissue and inflammatory infiltrates in the heart. To date, while ACM adipogenesis is a well-investigated differentiation program, ACM-related fibrosis remains a scientific gap of knowledge. In this study, we analyze the fibrotic process occurring during ACM pathogenesis focusing on the role of cardiac mesenchymal stromal cells (C-MSC) as a source of myofibroblasts. We performed the ex vivo studies on plasma and right ventricular endomyocardial bioptic samples collected from ACM patients and healthy control donors (HC). In vitro studies were performed on C-MSC isolated from endomyocardial biopsies of both groups. Our results revealed that circulating TGF-ß1 levels are significantly higher in the ACM cohort than in HC. Accordingly, fibrotic markers are increased in ACM patient-derived cardiac biopsies compared to HC ones. This difference is not evident in isolated C-MSC. Nevertheless, ACM C-MSC are more responsive than HC ones to TGF-ß1 treatment, in terms of pro-fibrotic differentiation and higher activation of the SMAD2/3 signaling pathway. These results provide the novel evidence that C-MSC are a source of myofibroblasts and participate in ACM fibrotic remodeling, being highly responsive to ACM-characteristic excess TGF-ß1.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Endocardium/pathology , Mesenchymal Stem Cells/pathology , Myofibroblasts/pathology , Transforming Growth Factor beta1/physiology , Adult , Arrhythmogenic Right Ventricular Dysplasia/blood , Arrhythmogenic Right Ventricular Dysplasia/pathology , Cell Differentiation , Endocardium/metabolism , Female , Fibrosis , Humans , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , RNA, Messenger/biosynthesis , Signal Transduction/physiology , Smad2 Protein/physiology , Smad3 Protein/physiology , Transforming Growth Factor beta1/blood
5.
Biomedicines ; 8(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352880

ABSTRACT

AIMS: A considerable proportion of patients affected by coronavirus respiratory disease (COVID-19) develop cardiac injury. The viral impact in cardiomyocytes deserves, however, further investigations, especially in asymptomatic patients. METHODS: We investigated for SARS-CoV-2 presence and activity in heart tissues of six consecutive COVID-19 patients deceased from respiratory failure showing no signs of cardiac involvement and with no history of heart disease. Cardiac autopsy samples were collected within 2 h after death, and then analysed by digital PCR, Western blot, immunohistochemistry, immunofluorescence, RNAScope, and transmission electron microscopy assays. RESULTS: The presence of SARS-CoV-2 into cardiomyocytes was invariably detected in all assays. A variable pattern of cardiomyocyte injury was observed, spanning from absence of cell death and subcellular alterations hallmarks, to intracellular oedema and sarcomere ruptures. In addition, we found active viral transcription in cardiomyocytes, by detecting both sense and antisense SARS-CoV-2 spike RNA. CONCLUSIONS: In this autopsy analysis of patients with no clinical signs of cardiac involvement, the presence of SARS-CoV-2 in cardiomyocytes has been detected, determining variable patterns of intracellular damage. These findings suggest the need for cardiologic surveillance in surviving COVID-19 patients not displaying a cardiac phenotype.

6.
Int J Mol Sci ; 20(10)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096574

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by the progressive substitution of functional myocardium with noncontractile fibro-fatty tissue contributing to ventricular arrhythmias and sudden cardiac death. Cyclophilin A (CyPA) is a ubiquitous protein involved in several pathological mechanisms, which also characterize ACM (i.e., fibrosis, inflammation, and adipogenesis). Nevertheless, the involvement of CyPA in ACM cardiac remodeling has not been investigated yet. Thus, we first evaluated CyPA expression levels in the right ventricle (RV) tissue specimens obtained from ACM patients and healthy controls (HC) by immunohistochemistry. Then, we took advantage of ACM- and HC-derived cardiac mesenchymal stromal cells (C-MSC) to assess CyPA modulation during adipogenic differentiation. Interestingly, CyPA was more expressed in the RV sections obtained from ACM vs. HC subjects and positively correlated with the adipose replacement extent. Moreover, CyPA was upregulated at early stages of C-MSC adipogenic differentiation and was secreted at higher level over time in ACM- derived C-MSC. Our study provides novel ex vivo and in vitro information on CyPA expression in ACM remodeling paving the way for future C-MSC-based mechanistic and therapeutic investigations.


Subject(s)
Arrhythmias, Cardiac/metabolism , Cardiomyopathies/metabolism , Cyclophilin A/metabolism , Ventricular Remodeling , Adipogenesis/physiology , Adipose Tissue/pathology , Arrhythmias, Cardiac/pathology , Cardiomyopathies/pathology , Cell Differentiation , Cyclophilin A/genetics , Death, Sudden, Cardiac/pathology , Fibrosis , Gene Expression , Heart Ventricles/metabolism , Heart Ventricles/pathology , Humans , Inflammation , Mesenchymal Stem Cells/pathology , Myocardium
7.
Stem Cells Int ; 2019: 8203950, 2019.
Article in English | MEDLINE | ID: mdl-30906328

ABSTRACT

The cellular response to the extracellular matrix (ECM) microenvironment mediated by integrin adhesion is of fundamental importance, in both developmental and pathological processes. In particular, mechanotransduction is of growing importance in groundbreaking cellular models such as induced pluripotent stem cells (iPSC), since this process may strongly influence cell fate and, thus, augment the precision of differentiation into specific cell types, e.g., cardiomyocytes. The decryption of the cellular machinery starting from ECM sensing to iPSC differentiation calls for new in vitro methods. Conveniently, engineered biomaterials activating controlled integrin-mediated responses through chemical, physical, and geometrical designs are key to resolving this issue and could foster clinical translation of optimized iPSC-based technology. This review introduces the main integrin-dependent mechanisms and signalling pathways involved in mechanotransduction. Special consideration is given to the integrin-iPSC linkage signalling chain in the cardiovascular field, focusing on biomaterial-based in vitro models to evaluate the relevance of this process in iPSC differentiation into cardiomyocytes.

8.
J Transl Med ; 16(1): 352, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30541573

ABSTRACT

BACKGROUND: To date the TGF-ß1 activation mediated by integrin ανß5 during fibrosis is well-known. This process has been shown also in the heart, where cardiac fibroblasts (CF) differentiate into α-smooth muscle actin (α-SMA)-positive myofibroblasts (MyoFB). Here, we studied the effects on CF, isolated by spontaneously hypertensive rats (SHR), of integrin ανß5 inhibition in MyoFB differentiation. METHODS: Staining and immunohistochemistry were performed on rat cardiac tissue. CF were isolated by enzymatic digestion from SHR (SHR-CF) and normotensive WKY (WKY-CF) rat hearts and then treated for in vitro evaluation. RESULTS: SHR heart tissues revealed a higher TGF-ß1 expression vs. WKY samples. SHR-CF showed an enhanced SMAD2/3 activation and an up-regulated expression of α-SMA, a typical MyoFB marker, especially after TGF-ß1 treatment. Immunostaining on cardiac tissues revealed a higher expression of integrin ανß5 in SHR vs. WKY rat hearts. In vitro results confirmed the up-regulation of integrin ανß5 expression in SHR-CF at basal condition and after TGF-ß1 treatment, in comparison with WKY-CF. Inhibition of integrin ανß5 by cilengitide treatment led a decreased expression of ανß5, collagen I, and α-SMA in SHR-CF vs. WKY-CF, resulting in a diminished differentiation of CF into MyoFB. Taking together, results suggested that SHR-CF are more susceptible to TGF-ß1, showing an up-regulated activation of SMAD2/3 signaling, and an increased ανß5, α-SMA, and collagen I expression. Hypertension stimulus promoted an up-regulation of integrin ανß5 on SHR cardiac tissue and its in vitro inhibition reverted pro-fibrotic events of SHR-CF. CONCLUSION: Inhibition of integrin ανß5 exerted by cilengitide strongly diminished SHR-CF differentiation into detrimental MyoFB. So, integrin ανß5 might be considered a novel therapeutic target and cilengitide an effective pharmacological tool to limit the progression of hypertension-induced cardiac fibrosis.


Subject(s)
Fibroblasts/metabolism , Fibroblasts/pathology , Myocardium/metabolism , Myocardium/pathology , Receptors, Vitronectin/antagonists & inhibitors , Actins/metabolism , Animals , Biomarkers/metabolism , Blood Pressure/drug effects , Collagen Type I/metabolism , Diastole/drug effects , Male , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, Vitronectin/genetics , Receptors, Vitronectin/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Snake Venoms/pharmacology , Systole/drug effects , Transforming Growth Factor beta1/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
9.
J Clin Med ; 7(9)2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30235804

ABSTRACT

Duchenne's muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.

10.
J Thorac Dis ; 10(Suppl 20): S2376-S2389, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30123577

ABSTRACT

The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools.

11.
Prog Cardiovasc Dis ; 61(3-4): 328-335, 2018.
Article in English | MEDLINE | ID: mdl-30041021

ABSTRACT

Marfan Syndrome (MFS) is a rare connective tissue disorder, resulting from mutations in the fibrillin-1 gene, characterized by pathologic phenotypes in multiple organs, the most detrimental of which affects the thoracic aorta. Indeed, thoracic aortic aneurysms (TAA), leading to acute dissection and rupture, are today the major cause of morbidity and mortality in adult MFS patients. Therefore, there is a compelling need for novel therapeutic strategies to delay TAA progression and counteract aortic dissection occurrence. Unfortunately, the wide phenotypic variability of MFS patients, together with the lack of a complete genotype-phenotype correlation, have represented until now a barrier hampering the conduction of translational studies aimed to predict disease prognosis and drug discovery. In this review, we will illustrate available therapeutic strategies to improve the health of MFS patients. Starting from gold standard surgical overtures and the description of the main pharmacological approaches, we will comprehensively review the state-of-the-art of in vivo MFS models and discuss recent clinical pharmacogenetic results. Finally, we will focus on induced pluripotent stem cells (iPSC) as a technology that, if integrated with preclinical research and pharmacogenetics, could contribute in determining the best therapeutic approach for each MFS patient on the base of individual differences. Finally, we will suggest the integration of preclinical studies, pharmacogenetics and iPSC technology as the most likely strategy to help solve the composite puzzle of precise medicine in this condition.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Marfan Syndrome , Adult , Aortic Dissection/etiology , Aortic Dissection/mortality , Aortic Dissection/prevention & control , Aortic Aneurysm, Thoracic/etiology , Aortic Aneurysm, Thoracic/mortality , Humans , Marfan Syndrome/complications , Marfan Syndrome/genetics , Marfan Syndrome/therapy , Pharmacogenomic Testing , Precision Medicine/methods , Prognosis
12.
Transl Res ; 192: 54-67, 2018 02.
Article in English | MEDLINE | ID: mdl-29245016

ABSTRACT

Atrial fibrillation (AF) is characterized by electrical, contractile, and structural remodeling mediated by interstitial fibrosis. It has been shown that human cardiac mesenchymal progenitor cells (CMPCs) can be differentiated into endothelial, smooth muscle, and fibroblast cells. Here, we have investigated, for the first time, the contribution of CMPCs in the fibrotic process occurring in AF. As expected, right auricolae samples displayed significantly higher fibrosis in AF vs control (CTR) patients. In tissue samples of AF patients only, double staining for c-kit and the myofibroblast marker α-smooth muscle actin (α-SMA) was detected. The number of c-kit-positive CMPC was higher in atrial subepicardial regions of CTR than AF cells. AF-derived CMPC (AF-CMPC) and CTR-derived CMPC (Ctr-CMPC) were phenotypically similar, except for CD90 and c-kit, which were significantly more present in AF and CTR cells, respectively. Moreover, AF showed a lower rate of population doubling and fold enrichment vs Ctr-CMPC. When exogenously challenged with the profibrotic transforming growth factor-ß1 (TGF-ß1), AF-CMPC showed a significantly higher nuclear translocation of SMAD2 than Ctr-CMPC. In addition, TGF-ß1 treatment induced the upregulation of COL1A1 and COL1A2 in AF-CMPC only. Further, both a marked production of soluble collagen and α-SMA upregulation have been observed in AF-CMPC only. Finally, electrophysiological studies showed that the inwardly rectifying potassium current (IK1) was evenly present in AF- and Ctr-CMPC in basal conditions and similarly disappeared after TGF-ß1 exposure. All together, these data suggest that AF steers the resident atrial CMPC compartment toward an electrically inert profibrotic phenotype.


Subject(s)
Atrial Fibrillation/pathology , Mesenchymal Stem Cells/pathology , Myocardium/pathology , Myofibroblasts/pathology , Aged , Atrial Fibrillation/physiopathology , Cell Differentiation , Female , Humans , Male , Mesenchymal Stem Cells/physiology , Middle Aged , Transforming Growth Factor beta1/pharmacology
13.
Mech Ageing Dev ; 159: 4-13, 2016 10.
Article in English | MEDLINE | ID: mdl-27045606

ABSTRACT

The bone marrow (BM) is a well-recognized source of stem/progenitor cells for cell therapy in cardiovascular diseases (CVDs). Preclinical and clinical studies suggest that endothelial progenitor cells (EPCs) contribute to reparative process of vascular endothelium and participate in angiogenesis. As for all organs and cells across the lifespan, BM and EPCs are negatively impacted by ageing due to microenvironment modifications and EPC progressive dysfunctions. The encouraging results in terms of neovascularization observed in young animals after EPC administration were mitigated in aged patients treated for ischemic CVDs. The limited efficacy of EPC-based therapy in clinical setting might be ascribed at least partly to ageing. In this review, we comprehensively discussed the age-related changes of BM and EPCs and their implication for cardiovascular cell-therapies. Finally, we examined alternative approaches under investigation to enhance EPC potency.


Subject(s)
Aging/metabolism , Bone Marrow/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Cell- and Tissue-Based Therapy , Endothelial Progenitor Cells/metabolism , Aging/pathology , Animals , Bone Marrow/pathology , Cardiovascular Diseases/pathology , Endothelial Progenitor Cells/pathology , Humans
14.
Cardiovasc Res ; 106(3): 353-64, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25750190

ABSTRACT

Peptidyl-prolyl cis-trans-isomerases are a highly conserved family of immunophilins. The three peptidyl-prolyl cis-trans-isomerase subfamilies are cyclophilins, FK-506-binding proteins, and parvulins. Peptidyl-prolyl cis-trans-isomerases are expressed in multiple human tissues and regulate different cellular functions, e.g. calcium handling, protein folding, and gene expression. Moreover, these subfamilies have been shown to be consistently involved in several cardiac and vascular diseases including heart failure, arrhythmias, vascular stenosis, endothelial dysfunction, atherosclerosis, and hypertension. This review provides a concise description of the peptidyl-prolyl cis-trans-isomerases and presents an incisive selection of studies focused on their relationship with cardiovascular diseases.


Subject(s)
Cardiovascular Diseases/enzymology , Cardiovascular System/enzymology , Peptidylprolyl Isomerase/metabolism , Signal Transduction , Animals , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Cardiovascular System/drug effects , Cardiovascular System/physiopathology , Cyclophilins/metabolism , Enzyme Inhibitors/therapeutic use , Humans , Molecular Targeted Therapy , NIMA-Interacting Peptidylprolyl Isomerase , Peptidylprolyl Isomerase/antagonists & inhibitors , Signal Transduction/drug effects , Tacrolimus Binding Proteins/metabolism
15.
Cell Mol Life Sci ; 72(9): 1725-40, 2015 May.
Article in English | MEDLINE | ID: mdl-25575564

ABSTRACT

Cardiovascular disease is the leading cause of morbidity and mortality in the developed world. Although ongoing therapeutic strategies ameliorate symptoms and prolong life for patients with cardiovascular diseases, they do not solve the critical issue related to the loss of cardiac tissue. Accordingly, stem/progenitor cell therapy has emerged as a paramount approach for cardiac repair and regeneration. In this regard, c-kit(+) cells have animated much interest and controversy. These cells are self-renewing, clonogenic, and multipotent and display a noteworthy potential to differentiate into all cardiovascular lineages. However, their functional contribution to cardiomyocyte turnover is one of the centrally debated issues concerning their regenerative potential. Regardless, plentiful preclinical and clinical studies have been conducted which provide evidence for the capacity of c-kit(+) cells to improve cardiac function. The purpose of this review is to give a comprehensive, impartial, critical description and evaluation of the literature on c-kit(+) cells from bench to bedside in order to address their true potential, benefits and controversies.


Subject(s)
Cardiovascular Diseases/therapy , Heart/physiology , Myocytes, Cardiac/cytology , Proto-Oncogene Proteins c-kit/metabolism , Regeneration , Stem Cells/cytology , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cell- and Tissue-Based Therapy/methods , Heart/physiopathology , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-kit/analysis , Stem Cells/metabolism , Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...