Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
medRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766118

ABSTRACT

BACKGROUND: Despite monogenic and polygenic contributions to cardiovascular disease (CVD), genetic testing is not widely adopted, and current tests are limited by the breadth of surveyed conditions and interpretation burden. METHODS: We developed a comprehensive clinical genome CVD test with semi-automated interpretation. Monogenic conditions and risk alleles were selected based on systematic assessment of the strength of disease association and evidence for increased disease risk, respectively. Non-CVD secondary finding genes, pharmacogenomic (PGx) variants and CVD polygenic risk scores (PRS) were also assessed for inclusion. Test performance was modeled using 2,594 genomes from the 1000 Genomes Project, and further investigated in 20 previously tested individuals. RESULTS: The CVD genome test is composed of a panel of 215 CVD gene-disease pairs, 35 non-CVD secondary findings genes, 4 risk alleles or genotypes, 10 PGx genes and a PRS for coronary artery disease. Modeling of test performance from samples in the 1000 Genomes Project revealed ~6% of individuals with a monogenic finding in a CVD-associated gene, 6% with a risk allele finding, 0.9% with a non-CVD secondary finding, and 93% with CVD-associated PGx variants. Assessment of blinded clinical samples showed complete concordance with prior testing. An average of 4 variants were reviewed per case, with interpretation and reporting time ranging from 9-96 min. CONCLUSIONS: A genome sequencing based CVD genetic risk assessment can provide comprehensive genetic disease and genetic risk information to patients with CVD. The semi-automated and limited interpretation burden suggest that this testing approach could be scaled to support population-level initiatives.

2.
Eur J Hum Genet ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565640

ABSTRACT

Currently, there are no widely accepted recommendations in the genomics field guiding the return of incidental findings (IFs), defined here as unexpected results that are unrelated to the indication for testing. Consequently, reporting policies for IFs among laboratories offering genomic testing are variable and may lack transparency. Herein we describe a framework developed to guide the evaluation and return of IFs encountered in probands undergoing clinical genome sequencing (cGS). The framework prioritizes clinical significance and actionability of IFs and follows a stepwise approach with stopping points at which IFs may be recommended for return or not. Over 18 months, implementation of the framework in a clinical laboratory facilitated the return of actionable IFs in 37 of 720 (5.1%) individuals referred for cGS, which is reduced to 3.1% if glucose-6-phosphate dehydrogenase (G6PD) deficiency is excluded. This framework can serve as a model to standardize reporting of IFs identified during genomic testing.

3.
Am J Med Genet A ; 194(3): e63462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929330

ABSTRACT

We describe a family with two maternal half-brothers both of whom presented with muscular dystrophy, autism spectrum disorder, developmental delay, and sensorineural hearing loss. The elder brother had onset of features at ~3 months of age, followed by clinical confirmation of muscular dystrophy at 3 years. Skeletal biopsy staining at 4.7 years showed an absence of dystrophin protein which prompted extensive molecular testing over 4 years that included gene panels, targeted single-gene assays, arrays, and karyotyping, all of which failed to identify a clinically significant variant in the DMD gene. At 10 years of age, clinical whole-genome sequencing (cWGS) was performed, which revealed a novel hemizygous ~50.7 Mb balanced pericentric inversion on chromosome X that disrupts the DMD gene in both siblings, consistent with the muscular dystrophy phenotype. This inversion also impacts the upstream regulatory region of POU3F4, structural rearrangements which are known to cause hearing loss. The unaffected mother is a heterozygous carrier for the pericentric inversion. This finding illustrates the ability of cWGS to detect a wide breadth of disease-causing genomic variations including large genomic rearrangements.


Subject(s)
Autism Spectrum Disorder , Muscular Dystrophies , Muscular Dystrophy, Duchenne , Child, Preschool , Female , Humans , Male , Autism Spectrum Disorder/genetics , Base Sequence , Chromosome Inversion/genetics , Dystrophin/genetics , Muscular Dystrophies/genetics , Muscular Dystrophy, Duchenne/genetics , POU Domain Factors/genetics
4.
Am J Med Genet A ; 191(12): 2831-2836, 2023 12.
Article in English | MEDLINE | ID: mdl-37551848

ABSTRACT

Copy number variants that duplicate distal upstream enhancer elements of the SOX9 gene cause 46,XX testicular differences of sex development (DSD) which is characterized by a 46,XX karyotype in an individual presenting with either ambiguous genitalia or genitalia with varying degrees of virilization, including those resembling typical male genitalia. Reported duplications in this region range in size from 24 to 780 kilobases (kb). Here we report a family with two affected individuals, the proband and his maternal uncle, harboring a 3.7 kb duplication of a SOX9 enhancer identified by clinical genome sequencing. Prior fluorescence in situ hybridization (FISH) for SRY and a multi-gene panel for ambiguous genitalia were non-diagnostic. The unaffected mother also carries this duplication, consistent with previously described incomplete penetrance. To our knowledge, this is the smallest duplication identified to-date, most of which resides in a 5.2 kb region that has been previously shown to possess enhancer activity that promotes the expression of SOX9. The duplication was confirmed by quantitative-PCR and shown to be in tandem by bidirectional Sanger sequencing breakpoint analysis. This finding highlights the importance of non-coding variant interrogation in suspected genetic disorders.


Subject(s)
Disorders of Sex Development , Regulatory Sequences, Nucleic Acid , Female , Humans , Male , In Situ Hybridization, Fluorescence , Disorders of Sex Development/genetics , Mothers , Sexual Development , SOX9 Transcription Factor/genetics
5.
Cell Genom ; 3(2): 100258, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36819666

ABSTRACT

Current standards in clinical genetics recognize the need to establish the validity of gene-disease relationships as a first step in the interpretation of sequence variants. We describe our experience incorporating the ClinGen Gene-Disease Clinical Validity framework in our interpretation and reporting workflow for a clinical genome sequencing (cGS) test for individuals with rare and undiagnosed genetic diseases. This "reactive" gene curation is completed upon identification of candidate variants during active case analysis and within the test turn-around time by focusing on the most impactful evidence and taking advantage of the broad applicability of the framework to cover a wide range of disease areas. We demonstrate that reactive gene curation can be successfully implemented in support of cGS in a clinical laboratory environment, enabling robust clinical decision making and allowing all variants to be fully and appropriately considered and their clinical significance confidently interpreted.

6.
Am J Med Genet A ; 188(9): 2825-2831, 2022 09.
Article in English | MEDLINE | ID: mdl-35670385

ABSTRACT

PERCHING syndrome is a rare multisystem developmental disorder caused by autosomal recessive (AR) variants (truncating and missense) in the Kelch-like family member 7 gene (KLHL7). We report the first phenotypic and molecular description of PERCHING syndrome in a patient from Central Africa. The patient presented multiple dysmorphic features in addition to neurological, respiratory, gastroenteric, and dysautonomic disorders. Clinical Whole Genome Sequencing in the proband and his mother identified two novel heterozygous variants in the KLHL7 gene, including a maternally inherited intronic variant (NM_001031710.2:c.793 + 5G > C) classified as Variant of Uncertain Significance and a frameshift stop gain variant (NM_001031710.2:c.944delG; p.Ser315ThrfsTer23) of unknown inheritance classified as likely pathogenic. Although the diagnosis was only evoked after genomic testing, the review of published patients suggests that this disease could be clinically recognizable and maybe considered as an encephalopathy. Our report will allow expanding the phenotypic and molecular spectrum of Perching syndrome.


Subject(s)
Codon, Nonsense , Heterozygote , Humans , Mutation , Whole Genome Sequencing
7.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35395838

ABSTRACT

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

8.
Hum Mutat ; 43(6): 765-771, 2022 06.
Article in English | MEDLINE | ID: mdl-35181961

ABSTRACT

The use of whole-genome sequencing (WGS) has accelerated the pace of gene discovery and highlighted the need for open and collaborative data sharing in the search for novel disease genes and variants. GeneMatcher (GM) is designed to facilitate connections between researchers, clinicians, health-care providers, and others to help in the identification of additional patients with variants in the same candidate disease genes. The Illumina Clinical Services Laboratory offers a WGS test for patients with suspected rare and undiagnosed genetic disease  and regularly submits potential candidate genes to GM to strengthen gene-disease relationships. We describe our experience with GM, including criteria for evaluation of candidate genes, and our workflow for the submission and review process. We have made 69 submissions, 36 of which are currently active. Ten percent of submissions have resulted in publications, with an additional 14 submissions part of ongoing collaborations and expected to result in a publication.


Subject(s)
High-Throughput Nucleotide Sequencing , Laboratories, Clinical , Humans , Whole Genome Sequencing
9.
Article in English | MEDLINE | ID: mdl-34737199

ABSTRACT

Undiagnosed genetic disease imposes a significant burden on families and health-care resources, especially in cases with a complex phenotype. Here we present a child with suspected leukodystrophy in the context of additional features, including hearing loss, clinodactyly, rotated thumbs, tapered fingers, and simplified palmar crease. Trio genome sequencing (GS) identified three molecular diagnoses in this individual: compound heterozygous missense variants associated with polymerase III (Pol III)-related leukodystrophy, a 4-Mb de novo copy-number loss including the MYCN gene associated with Feingold syndrome, and a mosaic single-nucleotide variant associated with COL2A1-related disorders. These variants fully account for the individual's features, but also illustrate the potential for superimposed and unclear contributions of multiple diagnoses to an individual's overall presentation. This report demonstrates the advantage of GS in detection of multiple variant types, including low-level mosaic variants, and emphasizes the need for comprehensive genetic analysis and detailed clinical phenotyping to provide individuals and their families with the maximum benefit for clinical care and genetic counseling.


Subject(s)
Intellectual Disability , Limb Deformities, Congenital , Microcephaly , Tracheoesophageal Fistula , Collagen Type II , Eyelids/abnormalities , Humans
10.
JAMA Pediatr ; 175(12): 1218-1226, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34570182

ABSTRACT

Importance: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management. Objective: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US. Design, Setting, and Participants: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children's hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020. Interventions: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study. Main Outcomes and Measures: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality. Results: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed. Conclusions and Relevance: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population. Trail Registration: ClinicalTrials.gov Identifier: NCT03290469.


Subject(s)
Acute Disease , Genetic Diseases, Inborn , Whole Genome Sequencing , Female , Humans , Infant , Infant, Newborn , Male , Outcome Assessment, Health Care
11.
J Med Genet ; 58(10): 712-716, 2021 10.
Article in English | MEDLINE | ID: mdl-32820033

ABSTRACT

OBJECTIVE: To determine the potential disease association between variants in LMBRD2 and complex multisystem neurological and developmental delay phenotypes. METHODS: Here we describe a series of de novo missense variants in LMBRD2 in 10 unrelated individuals with overlapping features. Exome sequencing or genome sequencing was performed on all individuals, and the cohort was assembled through GeneMatcher. RESULTS: LMBRD2 encodes an evolutionary ancient and widely expressed transmembrane protein with no known disease association, although two paralogues are involved in developmental and metabolic disorders. Exome or genome sequencing revealed rare de novo LMBRD2 missense variants in 10 individuals with developmental delay, intellectual disability, thin corpus callosum, microcephaly and seizures. We identified five unique variants and two recurrent variants, c.1448G>A (p.Arg483His) in three cases and c.367T>C (p.Trp123Arg) in two cases. All variants are absent from population allele frequency databases, and most are predicted to be deleterious by multiple in silico damage-prediction algorithms. CONCLUSION: These findings indicate that rare de novo variants in LMBRD2 can lead to a previously unrecognised early-onset neurodevelopmental disorder. Further investigation of individuals harbouring LMBRD2 variants may lead to a better understanding of the function of this ubiquitously expressed gene.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Motor Skills Disorders/diagnosis , Motor Skills Disorders/genetics , Mutation, Missense , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , Nucleocytoplasmic Transport Proteins/genetics , Alleles , Amino Acid Substitution , Cohort Studies , Genetic Predisposition to Disease , Genotype , Humans , Phenotype
12.
Pediatr Neurol ; 109: 56-62, 2020 08.
Article in English | MEDLINE | ID: mdl-32387008

ABSTRACT

BACKGROUND: Mutations in the X-linked gene WDR45 cause neurodegeneration with brain iron accumulation type 5. Global developmental delay occurs at an early age with slow progression to dystonia, parkinsonism, and dementia due to progressive iron accumulation in the brain. METHODS: We present 17 new cases and reviewed 106 reported cases of neurodegeneration with brain iron accumulation type 5. Detailed information related to developmental history and key time to event measures was collected. RESULTS: Within this cohort, there were 19 males. Most individuals were molecularly diagnosed by whole-exome testing. Overall 10 novel variants were identified across 11 subjects. All individuals were affected by developmental delay, most prominently in verbal skills. Most individuals experienced a decline in motor and cognitive skills. Although most individuals were affected by seizures, the spectrum ranged from provoked seizures to intractable epilepsy. The imaging findings varied as well, often evolving over time. The classic iron accumulation in the globus pallidus and substantia nigra was noted in half of our cohort and was associated with older age of image acquisition, whereas myelination abnormalities were associated with younger age. CONCLUSIONS: WDR45 mutations lead to a progressive and evolving disorder whose diagnosis is often delayed. Developmental delay and seizures predominate in early childhood, followed by a progressive decline of neurological function. There is variable expressivity in the clinical phenotypes of individuals with WDR45 mutations, suggesting that this gene should be considered in the diagnostic evaluation of children with myelination abnormalities, iron deposition, developmental delay, and epilepsy depending on the age at evaluation.


Subject(s)
Carrier Proteins/genetics , Demyelinating Diseases , Developmental Disabilities , Epilepsy , Iron Metabolism Disorders , Neuroaxonal Dystrophies , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Demyelinating Diseases/diagnosis , Demyelinating Diseases/etiology , Demyelinating Diseases/genetics , Demyelinating Diseases/physiopathology , Developmental Disabilities/diagnosis , Developmental Disabilities/etiology , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Epilepsy/diagnosis , Epilepsy/etiology , Epilepsy/genetics , Epilepsy/physiopathology , Female , Humans , Infant , Iron Metabolism Disorders/complications , Iron Metabolism Disorders/diagnosis , Iron Metabolism Disorders/genetics , Iron Metabolism Disorders/physiopathology , Male , Middle Aged , Neuroaxonal Dystrophies/complications , Neuroaxonal Dystrophies/diagnosis , Neuroaxonal Dystrophies/genetics , Neuroaxonal Dystrophies/physiopathology , Phenotype , Exome Sequencing , Young Adult
13.
Alzheimers Dement (N Y) ; 6(1): e12002, 2020.
Article in English | MEDLINE | ID: mdl-32211507

ABSTRACT

INTRODUCTION: The safety of predicting conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) dementia using apolipoprotein E (APOE) genotyping is unknown. METHODS: We randomized 114 individuals with MCI to receive estimates of 3-year risk of conversion to AD dementia informed by APOE genotyping (disclosure arm) or not (non-disclosure arm) in a non-inferiority clinical trial. Primary outcomes were anxiety and depression scores. Secondary outcomes included other psychological measures. RESULTS: Upper confidence limits for randomization arm differences were 2.3 on the State Trait Anxiety Index and 0.5 on the Geriatric Depression Scale, below non-inferiority margins of 3.3 and 1.0. Moreover, mean scores were lower in the disclosure arm than non-disclosure arm for test-related positive impact (difference: -1.9, indicating more positive feelings) and AD concern (difference: -0.3). DISCUSSION: Providing genetic information to individuals with MCI about imminent risk for AD does not increase risks of anxiety or depression and may provide psychological benefits.

14.
NPJ Genom Med ; 4: 5, 2019.
Article in English | MEDLINE | ID: mdl-30792901

ABSTRACT

Patients with rare, undiagnosed, or genetic disease (RUGD) often undergo years of serial testing, commonly referred to as the "diagnostic odyssey". Patients in resource-limited areas face even greater challenges-a definitive diagnosis may never be reached due to difficulties in gaining access to clinicians, appropriate specialists, and diagnostic testing. Here, we report on a collaboration of the Illumina iHope Program with the Foundation for the Children of the Californias and Hospital Infantil de Las Californias, to enable deployment of clinical whole genome sequencing (cWGS) as first-tier test in a resource-limited dysmorphology clinic in northern Mexico. A total of 60 probands who were followed for a suspected genetic diagnosis and clinically unresolved after expert examination were tested with cWGS, and the ordering clinicians completed a semi-structured survey to investigate change in clinical management resulting from cWGS findings. Clinically significant genomic findings were identified in 68.3% (n = 41) of probands. No recurrent molecular diagnoses were observed. Copy number variants or gross chromosomal abnormalities accounted for 48.8% (n = 20) of the diagnosed cases, including a mosaic trisomy and suspected derivative chromosomes. A qualitative assessment of clinical management revealed 48.8% (n = 20) of those diagnosed had a change in clinical course based on their cWGS results, despite resource limitations. These data suggest that a cWGS first-tier testing approach can benefit patients with suspected genetic disorders.

15.
Genet Med ; 21(8): 1797-1807, 2019 08.
Article in English | MEDLINE | ID: mdl-30679821

ABSTRACT

PURPOSE: Haploinsufficiency of USP7, located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling. METHODS: We report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency. RESULTS: The clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination. CONCLUSION: The consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.


Subject(s)
Intellectual Disability/genetics , Language Development Disorders/genetics , Neurodevelopmental Disorders/genetics , Problem Behavior , Adolescent , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Child , Child, Preschool , Chromosome Deletion , DNA-Binding Proteins/genetics , Genome, Human/genetics , Haploinsufficiency/genetics , Humans , Infant , Infant, Newborn , Intellectual Disability/physiopathology , Language Development Disorders/physiopathology , Neurodevelopmental Disorders/physiopathology , Nuclear Proteins/genetics , Phenotype , Proteins/genetics , Exome Sequencing
16.
Genet Med ; 21(5): 1121-1130, 2019 05.
Article in English | MEDLINE | ID: mdl-30293986

ABSTRACT

PURPOSE: Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test. METHODS: We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases. RESULTS: We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs. CONCLUSION: Robust identification of CNVs by GS is possible within a clinical testing environment.


Subject(s)
DNA Copy Number Variations/genetics , Rare Diseases/genetics , Undiagnosed Diseases/genetics , Adolescent , Child , Child, Preschool , Chromosome Mapping/methods , Cohort Studies , Female , Genetic Testing/methods , Genome, Human , Genomics/methods , Humans , Infant , Male , Rare Diseases/diagnosis , Undiagnosed Diseases/diagnosis , Whole Genome Sequencing/methods , Young Adult
17.
Am J Hum Genet ; 103(4): 602-611, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30269814

ABSTRACT

Inherited GPI deficiencies (IGDs) are a subset of congenital disorders of glycosylation that are increasingly recognized as a result of advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS). IGDs cause a series of overlapping phenotypes consisting of seizures, dysmorphic features, multiple congenital malformations, and severe intellectual disability. We present a study of six individuals from three unrelated families in which WES or WGS identified bi-allelic phosphatidylinositol glycan class S (PIGS) biosynthesis mutations. Phenotypes included severe global developmental delay, seizures (partly responding to pyridoxine), hypotonia, weakness, ataxia, and dysmorphic facial features. Two of them had compound-heterozygous variants c.108G>A (p.Trp36∗) and c.101T>C (p.Leu34Pro), and two siblings of another family were homozygous for a deletion and insertion leading to p.Thr439_Lys451delinsArgLeuLeu. The third family had two fetuses with multiple joint contractures consistent with fetal akinesia. They were compound heterozygous for c.923A>G (p.Glu308Gly) and c.468+1G>C, a splicing mutation. Flow-cytometry analyses demonstrated that the individuals with PIGS mutations show a GPI-AP deficiency profile. Expression of the p.Trp36∗ variant in PIGS-deficient HEK293 cells revealed only partial restoration of cell-surface GPI-APs. In terms of both biochemistry and phenotype, loss of function of PIGS shares features with PIGT deficiency and other IGDs. This study contributes to the understanding of the GPI-AP biosynthesis pathway by describing the consequences of PIGS disruption in humans and extending the family of IGDs.


Subject(s)
Abnormalities, Multiple/genetics , Acyltransferases/genetics , Arthrogryposis/genetics , Cerebellar Ataxia/genetics , Epilepsy, Generalized/genetics , Cell Line , Child , Child, Preschool , Developmental Disabilities/genetics , Female , HEK293 Cells , Humans , Intellectual Disability/genetics , Male , Muscle Hypotonia/genetics , Mutation , Nervous System Malformations/genetics , Pedigree , Seizures/genetics , Syndrome , Exome Sequencing/methods
18.
Hum Mutat ; 39(2): 281-291, 2018 02.
Article in English | MEDLINE | ID: mdl-29193635

ABSTRACT

We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis.


Subject(s)
Bone and Bones/physiology , Heart/physiology , Proteins/genetics , Animals , Blotting, Western , Bone and Bones/metabolism , Cell Cycle/genetics , Cell Cycle/physiology , Cell Line , Exome/genetics , Female , HeLa Cells , Humans , Male , Whole Genome Sequencing , Zebrafish
19.
J Empir Res Hum Res Ethics ; 11(1): 21-30, 2016 02.
Article in English | MEDLINE | ID: mdl-26928896

ABSTRACT

An increasing number of individuals are being recruited to whole genome sequencing (WGS) research. When asked hypothetically, the majority of the public express willingness to participate in this type of research, yet little is known about how many individuals will actually consent to research participation or what they perceive the risks to be. The MedSeq Project is a clinical trial exploring WGS in clinical care. We documented primary reason(s) for declining participation and reviewed audio-recorded informed consent sessions to identify participants' concerns. Of 514 individuals recruited, 173 (34%) actively declined, 205 (40%) enrolled, and the remaining 136 (26%) were ineligible, unresponsive or waitlisted. Although the majority of active decliners cited logistical barriers, 40% cited risks related to the ethical, legal, and social implications (ELSI) of WGS research. Participants similarly discussed ELSI-related concerns but felt the potential benefits of participation outweighed the risks. Findings provide insight into the perspectives of potential WGS research participants and identify potential barriers to participation.


Subject(s)
Attitude , Biomedical Research , Genome , Informed Consent , Precision Medicine , Sequence Analysis, DNA , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Motivation , Risk , Surveys and Questionnaires , Young Adult
20.
J Genet Couns ; 25(1): 62-72, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25911622

ABSTRACT

As the use of genomic technology has expanded in research and clinical settings, issues surrounding informed consent for genome and exome sequencing have surfaced. Despite the importance of informed consent, little is known about the specific challenges that professionals encounter when consenting patients or research participants for genomic sequencing. We interviewed 29 genetic counselors and research coordinators with considerable experience obtaining informed consent for genomic sequencing to understand their experiences and perspectives. As part of this interview, 24 interviewees discussed an informed consent case they found particularly memorable or challenging. We analyzed these case examples to determine the primary issue or challenge represented by each case. Challenges fell into two domains: participant understanding, and facilitating decisions about testing or research participation. Challenges related to participant understanding included varying levels of general and genomic literacy, difficulty managing participant expectations, and contextual factors that impeded participant understanding. Challenges related to facilitating decision-making included complicated family dynamics such as disagreement or coercion, situations in which it was unclear whether sequencing research would be a good use of participant time or resources, and situations in which the professional experienced disagreement or discomfort with participant decisions. The issues highlighted in these case examples are instructive in preparing genetics professionals to obtain informed consent for genomic sequencing.


Subject(s)
Genetic Counseling/methods , Genome, Human , Informed Consent , Professional Role , Professional-Family Relations , Decision Making , Genetic Testing , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...