Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 225(2): 693-712, 2020 01.
Article in English | MEDLINE | ID: mdl-31514239

ABSTRACT

Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy were strongest in Salix exigua, moderately supported for Populus deltoides, and indiscernible in Salix amygdaloides. Ensemble mean projected warming of 3.5°C shifted snowmelt peaks 10-19 d earlier relative to S. exigua and P. deltoides seed release, because decreased winter chilling combined with increased spring forcing limited change in their phenology. By contrast, warming shifted both snowmelt peaks and S. amygdaloides seed release 21 d earlier, maintaining their synchrony. Decoupling of snowmelt from seed release for Salicaceae with strong chilling requirements is likely to reduce resources critical for recruitment of these foundational riparian forests, although the magnitude of future decoupling remains uncertain.


Subject(s)
Climate Change , Rivers , Seeds/physiology , Snow , Climate , Geography , Linear Models , Models, Biological , Populus/physiology , Salix/physiology , Seasons , Temperature , Time Factors
2.
New Phytol ; 197(2): 532-543, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23171384

ABSTRACT

In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. Low water availability reduced seedling biomass by 70-97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (Δ¹³C(leaf) ), but did not increase biomass more in drier treatments than wetter treatments. The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.


Subject(s)
Carbon Dioxide/pharmacology , Climate Change , Ecosystem , Analysis of Variance , Biomass , Carbon/metabolism , Carbon Isotopes , Dehydration , Humidity , Nitrogen/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Seedlings/drug effects , Seedlings/growth & development , Soil/chemistry , Trees/anatomy & histology , Trees/growth & development , Trees/physiology , Water/chemistry
3.
Oecologia ; 163(1): 13-24, 2010 May.
Article in English | MEDLINE | ID: mdl-20387033

ABSTRACT

Increased soil N availability may often facilitate plant invasions. Therefore, lowering N availability might reduce these invasions and favor desired species. Here, we review the potential efficacy of several commonly proposed management approaches for lowering N availability to control invasion, including soil C addition, burning, grazing, topsoil removal, and biomass removal, as well as a less frequently proposed management approach for lowering N availability, establishment of plant species adapted to low N availability. We conclude that many of these approaches may be promising for lowering N availability by stimulating N immobilization, even though most are generally ineffective for removing N from ecosystems (excepting topsoil removal). C addition and topsoil removal are the most reliable approaches for lowering N availability, and often favor desired species over invasive species, but are too expensive or destructive, respectively, for most management applications. Less intensive approaches, such as establishing low-N plant species, burning, grazing and biomass removal, are less expensive than C addition and may lower N availability if they favor plant species that are adapted to low N availability, produce high C:N tissue, and thus stimulate N immobilization. Regardless of the method used, lowering N availability sufficiently to reduce invasion will be difficult, particularly in sites with high atmospheric N deposition or agricultural runoff. Therefore, where feasible, the disturbances that result in high N availability should be limited in order to reduce invasions by nitrophilic weeds.


Subject(s)
Nitrogen/chemistry , Plant Development , Soil/analysis , Species Specificity
4.
J Chem Ecol ; 33(12): 2337-44, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18030533

ABSTRACT

The phytotoxin (+/-)-catechin has been proposed to mediate invasion and autoinhibition by the Eurasian plant Centaurea maculosa (spotted knapweed). The importance of (+/-)-catechin to C. maculosa ecology depends in part on whether sufficient catechin concentrations occur at appropriate times and locations within C. maculosa soil to influence neighboring plants. Previous research on catechin in C. maculosa soils has yielded conflicting results, with some studies finding high soil catechin concentrations and other, more recent studies finding little or no catechin in field soils. Here, we report the most extensive study of soil catechin concentrations to date. We examined soil catechin concentrations in 402 samples from 11 C. maculosa sites in North America sampled in consecutive months over 1 yr, excluding winter months. One site was sampled on seven dates, another was sampled twice, and the remaining nine sites were each sampled once on a range of sampling dates. Methods used were similar to those with which we previously measured high soil catechin concentrations. We detected catechin only in the site that was sampled on seven dates and only on one sampling date in that site (May 16 2006), but in all samples collected on that date. The mean soil catechin concentration on that date was 0.65 +/- 0.45 (SD) mg g(-1), comparable to previously reported high concentrations. There are a number of possible explanations for the infrequency with which we detected soil catechin in this work compared to previous studies. Differences in results could reflect spatial and temporal variation in catechin exudation or degradation, as we examined different sites in a different year from most previous studies. Also, large quantities of catechin were detected in blanks for two sampling periods in the present study, leading us to discard those data. This contamination suggests that previous reports of high catechin concentrations that did not include blanks should be viewed with caution. Our results suggest that pure catechin is only rarely present in C. maculosa bulk soils. Thus, although catechin may play a role in C. maculosa invasion, the infrequency of soil catechin that we determined in this study suggests that we cannot be as certain of its role as previous reports of high soil catechin concentrations suggested.


Subject(s)
Catechin/analysis , Soil/analysis , Chromatography, High Pressure Liquid , Mass Spectrometry
5.
New Phytol ; 173(4): 852-860, 2007.
Article in English | MEDLINE | ID: mdl-17286833

ABSTRACT

The flavonol (+/-)-catechin is an allelochemical produced by the invasive weed Centaurea maculosa (spotted knapweed). The full effects of (+/-)-catechin on plant communities in both the native and the introduced ranges of C. maculosa remain uncertain. Here, by supplementing plant growth media with (+/-)-catechin, we showed that low (+/-)-catechin concentrations may induce growth and defense responses in neighboring plants. Doses of the allelochemical lower than the minimum inhibitory concentration (MIC) induced growth in Arabidopsis thaliana; plants treated with 25 microg ml(-1) (+/-)-catechin accumulated more than twice the biomass of untreated control plants. Further, pretreatment of A. thaliana roots with low concentrations of (+/-)-catechin induced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 in A. thaliana leaves. Low doses of (+/-)-catechin resulted in moderate increases in reactive oxygen species (ROS) in the meristems of treated plants, which may have loosened the cell walls and thus increased growth. Experiments with A. thaliana mutants indicated that (+/-)-catechin induces pathogen resistance by up-regulating defense genes via the salicylic acid (SA)/nonexpressor of pathogenesis related protein 1 (NPR1)-dependent pathway. Our results suggest that the growth and defense-inducing effects of (+/-)-catechin are concentration dependent, as (+/-)-catechin at higher concentrations is phytotoxic, thus suggesting the potential for hormesis to occur in nature.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Catechin/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/metabolism , Pseudomonas syringae/pathogenicity , Toxins, Biological/pharmacology , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cell Division/drug effects , Dose-Response Relationship, Drug , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Roots/microbiology , Plant Shoots/microbiology , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism
6.
Annu Rev Plant Biol ; 57: 233-66, 2006.
Article in English | MEDLINE | ID: mdl-16669762

ABSTRACT

The rhizosphere encompasses the millimeters of soil surrounding a plant root where complex biological and ecological processes occur. This review describes recent advances in elucidating the role of root exudates in interactions between plant roots and other plants, microbes, and nematodes present in the rhizosphere. Evidence indicating that root exudates may take part in the signaling events that initiate the execution of these interactions is also presented. Various positive and negative plant-plant and plant-microbe interactions are highlighted and described from the molecular to the ecosystem scale. Furthermore, methodologies to address these interactions under laboratory conditions are presented.


Subject(s)
Plant Roots/physiology , Host-Parasite Interactions , Plant Roots/metabolism , Plant Roots/microbiology
7.
Plant Signal Behav ; 1(6): 323-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-19517003

ABSTRACT

Invasive plants are a widespread problem but the mechanisms used by these plants to become invasive are often unknown. The production of phytotoxic natural products by invasive weeds is one mechanism by which these species may become successful competitors. Here we conducted a bioactivity-driven fractionation of root extracts and exudates from the invasive plant leafy spurge (Euphorbia esula L.), and structurally characterized jatrophane diterpenes and ellagic acid derivatives. Ellagic acid derivatives and one of the jatrophane diterpenes, esulone A, have been previously reported from leafy spurge, but another of the jatrophane diterpenes, kasuinine B, has not. We show that these compounds are phytotoxic but affect plants in different ways, either inducing overall plant necrosis or reducing root branching and elongation.

8.
J Theor Biol ; 222(4): 425-36, 2003 Jun 21.
Article in English | MEDLINE | ID: mdl-12781741

ABSTRACT

Size asymmetry in plant light acquisition complicates predictions of competitive outcomes in light-limited communities. We present a mathematically tractable model of asymmetric competition for light and discuss its implications for predicting outcomes of competition during establishment in two-, three-, and many-species communities. In contrast to the resource-reduction model of symmetric competition for a single resource, the model we present predicts that outcomes of asymmetric competition for light will sometimes depend on the timing of establishment and the consequent hierarchy among species in canopy position. Competitive outcomes in the model depend on the minimum light requirements (L(c)) and self-shading of species lower in the canopy compared to the light available (L(out)(*)) beneath species higher in the canopy. Succession progresses towards species with decreasing values for L(c), but arrested successions occur when initial dominants have relatively high values for L(c) but low values for L(out)(*), leading to founder control. A theoretically limitless number of species may coexist in competition for light when dominance is founder controlled. These model predictions have implications for an array of applied ecological questions, including methods to control invasive species in light-limited restored ecosystems.


Subject(s)
Competitive Behavior , Light , Models, Biological , Plant Development , Biomass , Ecosystem , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL