Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 14(42): 47659-47673, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36226963

ABSTRACT

Solid-state heterointerfaces are of interest for emergent local behavior that is distinct from either bulk parent compound. One technologically relevant example is the case of mixed ionic/electronic conductor (MIEC)-metal interfaces, which play an important role in electrochemistry. Metal-MIEC composite electrodes can demonstrate improved catalytic activity vs single-phase MIECs, improving fuel cell efficiency. Similarly, MIEC surface reaction kinetics are often evaluated using techniques that place metal current collectors in contact with the surface under evaluation, potentially altering the response vs the native surface. Techniques enabling direct and local in situ observation of the behavior at and around such heterointerfaces are needed. Here, we develop a spatially resolved optical transmission relaxation (2D-OTR) method providing continuous evaluation of local, high-temperature, controlled atmosphere defect kinetics across a ∼1 cm2 sample area simultaneously in a contact-free manner. We apply it to observe the spatial variance of oxygen incorporation and evolution rates at ∼525-620 °C, in response to step changes in oxygen partial pressure, on MIEC SrTi0.65Fe0.35O3-x films as a function of distance from porous Pt and Au layers. Using this model geometry, we find significant enhancements in kinetics adjacent to the metals that decay over a few millimeter distance. To extract kinetic parameters, we fit the short-term optical data (initial portion of relaxations) with an exponential decay function appropriate for surface-exchange-limited kinetics, yielding apparent surface exchange coefficients (kchem) with spatial resolution, decreasing with distance from the metal. To understand the kinetic processes governing the complete (long-term) optical relaxations, we performed COMSOL simulations, which demonstrated that a combination of laterally varying kchem and in-plane diffusion controls the observed kinetics over the full time range. Further support for spatially varying kchem comes from demonstrations of changing surface and bulk chemistry vs distance from the metal-MIEC interface, by X-ray photoelectron and optical absorption spectroscopies, respectively. Although microporous Pt and Au are not excellent electrodes in isolation, both metals exert a synergistic effect on the oxygen surface exchange rate in the presence of the mixed conducting film.

2.
ACS Nano ; 15(6): 9211-9221, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34041913

ABSTRACT

Dislocations in ionic solids are topological extended defects that modulate composition, strain, and charge over multiple length scales. As such, they provide an extra degree of freedom to tailor ionic and electronic transport beyond limits inherent in bulk doping. Heterogeneity of transport paths as well as the ability to dynamically reconfigure structure and properties through multiple stimuli lend dislocations to particular potential applications including memory, switching, non-Ohmic electronics, capacitive charge storage, and single-atom catalysis. However, isolating, understanding, and predicting causes of modified transport behavior remain a challenge. In this Perspective, we first review existing reports of dislocation-modified transport behavior in oxides, as well as synthetic strategies and multiscale characterization routes to uncover processing-structure-property relationships. We outline a vision for future research, suggesting outstanding questions, tasks, and opportunities. Advances in this field will require highly interdisciplinary, convergent computational-experimental approaches, covering orders of magnitude in length scale, and spanning fields from microscopy and machine learning to electro-chemo-mechanics and point defect chemistry to transport-by-design and advanced manufacturing.

3.
ACS Appl Mater Interfaces ; 12(43): 48614-48630, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33075221

ABSTRACT

The oxygen surface exchange coefficient (k) dictates the efficiency and response time of many mixed conductors, so its accurate, continuous measurement in realistic conditions, enabling rational tailoring, is necessary. However, recent results showed that k values determined by a thin-film optical transmission relaxation (OTR) method were orders of magnitude lower than those extracted from the cross-cell AC-impedance spectroscopy (AC-IS) approach, and similar discrepancies among methods exist in the literature. OTR has also detected dramatic increases in k in situ during crystallization. Therefore, in this work, we sought to establish whether k values from OTR are reliable, and to gain further insight into crystallization-induced changes, via comparison to the electrical conductivity relaxation (ECR) method. We performed simultaneous OTR and ECR measurements on the same region of an as-grown amorphous SrTi0.65Fe0.35O2.825+δ (STF) film, prepared by pulsed laser deposition and characterized by Rutherford backscattering spectrometry, during thermal treatment to induce crystallization and a large increase in k. We also compared cross-cell AC-IS vs OTR on an as-grown amorphous film during crystallization and OTR vs ECR on a crystalline-grown film. Simultaneous measurements eliminate variability in k between samples or due to different thermal/gas history. OTR and ECR methods yielded the same k values, and the same crystallization temperature, within error. Both isothermal optical absorption and electrical conductivity changes are proportional to the hole and oxygen concentration changes under the conditions of this study. However, while OTR was able to measure optical absorption changes under all of the conditions tested, ECR was not viable in the high-resistance regime. Cross-cell AC-IS k values were elevated vs OTR values, were less stable over time, and were only accessible in limited conditions. We discuss the potential impacts of current collectors and oxygen exchange driving force on k values determined by cross-cell AC-IS vs ECR vs OTR.

4.
Adv Mater ; 32(1): e1905178, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31680355

ABSTRACT

Solid-oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure-property relationships that would enable the rational design of better materials. Here, using epitaxial thin-film growth, synchrotron radiation, impedance spectroscopy, and density-functional theory, the impact of structural parameters (i.e., unit-cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9 Sr0.1 Ga0.95 Mg0.05 O3- δ . As compared to the zero-strain state, compressive strain reduces the unit-cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit-cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit-cell volumes and octahedral rotations decrease migration barriers and create low-energy migration pathways, respectively. The desired combination of large unit-cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit-cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion-conducting perovskite electrolytes.

5.
J Antimicrob Chemother ; 74(Suppl 5): v24-v30, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31782501

ABSTRACT

BACKGROUND: It is increasingly being recognized that the elimination of HCV requires a multidisciplinary approach and effective cooperation between primary and secondary care. OBJECTIVES: As part of a project (HepCare Europe) to integrate primary and secondary care for patients at risk of or infected with HCV, we developed a multidisciplinary educational Masterclass series for healthcare professionals (HCPs) working in primary care in Dublin and Bucharest. This article aims to describe and evaluate the series and examine how this model might be implemented into practice. METHODS: GPs and other HCPs working in primary care, addiction treatment services and NGOs were invited to eight 1 day symposia (HCV Masterclass series), examining the burden and management of HCV in key populations. Peer-support sessions were also conducted, to give people affected by HCV and community-based organizations working with those directly affected, an update on the latest developments in HCV treatment. RESULTS: One hundred percent of participants 'strongly agreed' or 'agreed' that the Masterclass helped them to appreciate the role of integrated services in 'the management of patients with HCV'. One hundred percent of participants indicated the importance of a 'designated nurse to liaise with hospital services'. An improvement of knowledge regarding HCV management of patients with high-risk behaviour was registered at the end of the course. CONCLUSIONS: Integrated approaches to healthcare and improving the knowledge of HCPs and patients of the latest developments in HCV treatment are very important strategies that can enhance the HCV care pathway and treatment outcomes.


Subject(s)
Education, Medical, Continuing/methods , Health Personnel/education , Hepatitis C/drug therapy , Interdisciplinary Communication , Antiviral Agents/therapeutic use , Delivery of Health Care/methods , Europe , Humans , Primary Health Care , Secondary Care
6.
ACS Appl Mater Interfaces ; 11(38): 34841-34853, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31433149

ABSTRACT

The oxygen deficiency or excess, as reflected in the nonstoichiometry of oxide films, plays a crucial role in their functional properties for applications such as micro solid oxide fuel cells, catalysis, sensors, ferroelectrics, and memristors. High concentrations of oxygen vacancies may be beneficial or detrimental according to the application, and hence there is interest in controlling the oxygen content of films without resorting to compositional changes. Here, we demonstrate that substantial changes in the nonstoichiometry of Pr0.1Ce0.9O2-δ (PCO), a model mixed ionic electronic conductor, can be achieved by fabricating multilayers with an inert material, SrTiO3 (STO). We fabricated heterostructures using pulsed laser deposition, keeping the total thickness of PCO and STO constant while varying the number of layers and thickness of each individual layer, to probe the effects of the PCO/STO interfaces. Conductivity measurements as a function of oxygen partial pressure (PO2) and temperature showed a significant weakening of the PO2 dependence compared to bulk PCO, which scaled with the density of interfaces. We confirmed that this change was due to variations in nonstoichiometry, by optical transmission measurements, and show that the lower oxygen content is consistent with a decrease in the effective oxygen reduction enthalpy of PCO. These results exemplify the dramatic differences in properties between films and their bulk counterparts, achievable by interface engineering, and provide generalized insight into tailoring the properties of mixed ionic electronic conductors at the nanoscale.

7.
Adv Mater ; 31(33): e1902493, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31237379

ABSTRACT

Effective integration of perovskite films into devices requires knowledge of their electro-chemomechanical properties. Raman spectroscopy is an excellent tool for probing such properties as the films' vibrational characteristics couple to the lattice volumetric changes during chemical expansion. While lattice volumetric changes are typically accessed by analyzing Raman shifts as a function of pressure, stress, or temperature, such methods can be impractical for thin films and do not capture information on chemical expansion. An in situ Raman spectroscopy technique using an electrochemical titration cell to change the oxygen nonstoichiometry of a model perovskite film, Sr(Ti,Fe)O3- y  , is reported and the lattice vibrational properties are correlated to the material's chemical expansion. How to select an appropriate Raman vibrational mode to track the evolution in oxygen nonstoichiometry is discussed. Subsequently, the frequency of the oxygen stretching mode around Fe4+ is tracked, as it decreases during reduction as the material expands and increases during reoxidation as the material shrinks. This methodology of oxygen pumping and in situ Raman spectroscopy of oxide films enables future in operando measurements even for small material volumes, as is typical for applications of films as electrodes or electrolytes utilized in electrochemical energy conversion or memory devices.

8.
ACS Appl Mater Interfaces ; 11(9): 9102-9116, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30676719

ABSTRACT

The oxygen surface exchange kinetics of mixed ionic and electronic conducting oxides (MIECs) play a critical role in the efficiency of intermediate-to-high-temperature electrochemical devices. Although there is increasing interest in low-temperature preparation of MIEC thin films, the impact of the resultant varied degrees of crystallinity on the surface exchange kinetics has not been widely investigated. Here, we probe the effect of crystallization on oxygen surface exchange kinetics in situ, by applying an optical transmission relaxation (OTR) approach during annealing of amorphous films. OTR enables contact-free, in situ, and continuous quantification of the oxygen surface exchange coefficient ( kchem); we previously applied it to Pr xCe1- xO2-δ and SrTi1- xFe xO3-δ thin films. In this work, the OTR approach was successfully extended to other mixed conducting thin film compositions for the first time (i.e., perovskite SrTi0.65Co0.35O3-δ and Ruddlesden-Popper Sr2Ti0.65Fe0.35O4±Î´), as well as to Pr0.1Ce0.9O2-δ, enabling quantification of the kchem of their native surfaces and comparison of the behavior of films with different final crystal structures. All thin films were prepared by pulsed laser deposition at 25 or 700-800 °C and subject to subsequent thermal treatments with simultaneous OTR monitoring of kchem. The surface roughness, grain size, and crystallinity were evaluated by scanning probe microscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Fluorite Pr0.1Ce0.9O2-δ films grown at 25 °C did not exhibit an increase in kchem after annealing, as they were already crystalline as grown at 25 °C. For all other compositions, OTR enabled in situ observation of both the crystallization process and the emergence of rapid surface exchange kinetics immediately upon crystallization. Perovskite SrTi0.65Co0.35O3-δ and Ruddlesden-Popper Sr2Ti0.65Fe0.35O4±Î´ thin films grown at 25 °C exhibited at least 1-2 orders of magnitude enhanced kchem after annealing compared with highly crystalline thin films grown at 800 °C, indicating the benefits of in situ crystallization.

9.
ACS Appl Mater Interfaces ; 11(2): 2031-2041, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30576103

ABSTRACT

Hematite (α-Fe2O3) is regarded as one of the most promising cost-effective and stable anode materials in photoelectrochemical applications, and its performance, like other transition-metal oxides, depends strongly on its electrical and defect properties. In this work, the electrical and thermomechanical properties of undoped and Sn-doped α-Fe2O3 nanoscale powders were characterized in situ at controlled temperatures ( T = 250 to 400 °C) and atmospheres ( pO2 = 10-4 to 1 atm O2) to investigate their transport and defect properties. Frequency-dependent complex impedance spectra show that interfacial resistance between particles is negligible in comparison with particle resistance. Detailed defect models predicting the dependence of electron, hole, and iron and oxygen vacancy concentrations on temperature and oxygen partial pressures for undoped and doped α-Fe2O3 were derived. Using these defect equilibria models, the operative defect regimes were established, and the bandgap energy of undoped α-Fe2O3 and oxidation enthalpy of Sn-doped α-Fe2O3 were obtained from the analysis of the temperature and pO2 dependence of the electrical conductivity. On the basis of these results, we are able to explain the surprisingly weak impact of donor doping on the electrical conductivity of α-Fe2O3. Furthermore, experimental means based on the results of this study are given for successfully tuning hematite to enhance its photocatalytic activity for the water oxidation reaction.

10.
Sci Technol Adv Mater ; 19(1): 130-141, 2018.
Article in English | MEDLINE | ID: mdl-29511391

ABSTRACT

We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.

11.
ACS Appl Mater Interfaces ; 8(18): 11466-75, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27088238

ABSTRACT

Graphene oxide (GO) is a two-dimensional graphitic carbon material functionalized with oxygen-containing surface functional groups. The material is of interest in energy conversion, sensing, chemical processing, gas barrier, and electronics applications. Multilayer GO paper has recently been applied as a new proton conducting membrane in low temperature fuel cells. However, a detailed understanding of the electrical/dielectric properties, including separation of the ionic vs electronic contributions under relevant operating conditions, has so far been lacking. Here, the electrical conductivity and dielectric permittivity of GO paper are investigated in situ from 30 to 120 °C, and from 0 to 100% relative humidity (RH) using impedance spectroscopy. These are related to the water content, measured by thermogravimetric analysis. With the aid of electron blocking measurements, GO is demonstrated to be a mixed electronic-protonic conductor, and the ion transference number is derived for the first time. For RH > 40%, conductivity is dominated by proton transport (with a maximum of 0.5 mS/cm at 90 °C and 100% RH). For RH < 40%, electronic conductivity dominates (with a maximum of 7.4 mS/cm at ∼80 °C and 0% RH). The relative permittivity of GO paper increases with decreasing humidity, from ∼10 at 100% RH to several 1000 at 10% RH. These results underline the potential of GO for application not only as a proton conducting electrolyte but also as a mixed conducting electrode material under appropriate conditions. Such materials are highly applicable in electrochemical energy conversion and storage devices such as fuel cells and electrolyzers.

12.
Dalton Trans ; 45(4): 1572-81, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26685894

ABSTRACT

We combine theory with experiment in searching for "missing", stable materials within the Zn-Ti-O chemical system, leading to the discovery of a new pseudobrookite phase, ZnxTi3-xO5-δ. This ternary system was chosen for (1) technological relevance, (2) earth abundance, and (3) the fact that many compounds in this system are predicted from enthalpies of formation to be borderline stable, suggesting an important role of entropic contributions in their stabilization and making this chemical system a perfect test bed for exploring the limits of theoretical predictions. The initial set of exploratory experimental syntheses, via sintering in evacuated ampoules and quenching, resulted in a single phase ZnxTi3-xO5-δ composition with x ≈ 0.6 and an almost stoichiometric oxygen content, as evaluated by X-ray fluorescence, energy dispersive spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The theoretically calculated lowest energy crystal structure for the closest stoichiometric ZnTi5O10 composition matched that measured experimentally by synchrotron X-ray diffraction (allowing for differences attributable to cation disorder). The measured broad optical absorption, n-type electrical conductivity, and stability in acidic media are comparable to those of other ternary pseudobrookites and Ti-O Magnéli phases, suggesting comparable applicability as a robust electrode or catalyst support in electrochemical devices or water remediation. However, the new phase decomposes upon heating in air as it oxidizes. The success of the present approach to identify a "missing material" in an earth-abundant and applications-rich system suggests that future efforts to experimentally realize and theoretically confirm missing materials in this and similar systems are warranted, both scientifically and technologically.

13.
Materials (Basel) ; 9(10)2016 Oct 21.
Article in English | MEDLINE | ID: mdl-28773978

ABSTRACT

Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

14.
Phys Chem Chem Phys ; 17(15): 10028-39, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25785684

ABSTRACT

In this work, chemical expansion in perovskite oxides was characterized in detail, motivated, inter alia, by a desire to understand the lower chemical expansion coefficients observed for perovskites in comparison to fluorite-structured oxides. Changes in lattice parameter and in local atomic arrangements taking place during compositional changes of perovskites, i.e., stoichiometric expansion, were investigated by developing an empirical model and through molecular dynamics and density functional theory atomistic simulations. An accurate empirical expression for predicting lattice constants of perovskites was developed, using a similar approach to previous reports. From this equation, analytical expressions relating chemical expansion coefficients to separate contributions from the cation and anion sublattices, assuming Shannon ionic radii, were developed and used to isolate the effective radius of an oxygen vacancy, rV. Using both experimental and simulated chemical expansion coefficient data, rV for a variety of perovskite compositions was estimated, and trends in rV were studied. In most cases, rV was slightly smaller than or similar to the radius of an oxide ion, but larger than in the fluorite structured materials. This result was in good agreement with the atomistic simulations, showing contractive relaxations of the closest oxide ions towards the oxygen vacancy. The results indicate that the smaller chemical expansion coefficients of perovskites vs. fluorites are largely due to the smaller change in cation radii in perovskites, given that the contraction around the oxygen vacancy appears to be less in this structure. Limitations of applicability for the model are discussed.

15.
AIDS Patient Care STDS ; 24(12): 753-62, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21138381

ABSTRACT

Hepatitis C (HCV) infection is common among injecting drug users (IDUs), yet accessing of HCV care, particularly HCV treatment, is suboptimal. There has been little in-depth study of IDUs experiences of what enables or prevents them engaging at every level of HCV care, including testing, follow-up, management and treatment processes. This qualitative study aimed to explore these issues with current and former IDUs in the greater Dublin area, Ireland. From September 2007 to September 2008 in-depth interviews were conducted with 36 service-users across a range of primary and secondary care services, including: two addiction clinics, a general practice, a community drop-in center, two hepatology clinics, and an infectious diseases clinic. Interviews were analyzed using a grounded theory approach. Barriers to HCV care included perceptions of HCV infection as relatively benign, fear of investigations and treatment, and feeling well. Perceptions were shaped by the discourse about HCV and "horror stories" about the liver biopsy and treatment within their peer networks. Difficulties accessing HCV care included limited knowledge of testing sites, not being referred for specialist investigations and ineligibility for treatment. Employment, education, and addiction were priorities that competed with HCV care. Relationships with health care providers influenced engagement with care: Trust in providers, concern for the service-user, and continuity of care fostered engagement. Education on HCV infection, investigations, and treatment altered perceptions. Becoming symptomatic, responsibilities for children, and wanting to move on from drug use motivated HCV treatment. In conclusion, IDUs face multiple barriers to HCV care. A range of facilitators were identified that could inform future interventions.


Subject(s)
Health Services Accessibility , Hepatitis C/diagnosis , Hepatitis C/drug therapy , Substance Abuse, Intravenous/complications , Adult , Female , Health Knowledge, Attitudes, Practice , Hepacivirus , Hepatitis C/therapy , Hepatitis C/virology , Humans , Interviews as Topic , Ireland , Male , Middle Aged , Substance Abuse, Intravenous/drug therapy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...