Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 10: e13183, 2022.
Article in English | MEDLINE | ID: mdl-35441056

ABSTRACT

Ceratonova shasta is a myxozoan parasite endemic to the Pacific Northwest of North America that is linked to low survival rates of juvenile salmonids in some watersheds such as the Klamath River basin. The density of C. shasta actinospores in the water column is typically highest in the spring (March-June), and directly influences infection rates for outmigrating juvenile salmonids. Current management approaches require quantities of C. shasta density to assess disease risk and estimate survival of juvenile salmonids. Therefore, we developed a model to simulate the density of waterborne C. shasta actinospores using a mechanistic framework based on abiotic drivers and informed by empirical data. The model quantified factors that describe the key features of parasite abundance during the period of juvenile salmon outmigration, including the week of initial detection (onset), seasonal pattern of spore density, and peak density of C. shasta. Spore onset was simulated by a bio-physical degree-day model using the timing of adult salmon spawning and accumulation of thermal units for parasite development. Normalized spore density was simulated by a quadratic regression model based on a parabolic thermal response with river water temperature. Peak spore density was simulated based on retained explanatory variables in a generalized linear model that included the prevalence of infection in hatchery-origin Chinook juveniles the previous year and the occurrence of flushing flows (≥171 m3/s). The final model performed well, closely matched the initial detections (onset) of spores, and explained inter-annual variations for most water years. Our C. shasta model has direct applications as a management tool to assess the impact of proposed flow regimes on the parasite, and it can be used for projecting the effects of alternative water management scenarios on disease-induced mortality of juvenile salmonids such as with an altered water temperature regime or with dam removal.


Subject(s)
Parasites , Parasitic Diseases, Animal , Salmonidae , Animals , Parasitic Diseases, Animal/epidemiology , Salmon/parasitology , Salmonidae/parasitology , Water
2.
Mov Ecol ; 9(1): 17, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33823940

ABSTRACT

BACKGROUND: Studies of animal movement using location data are often faced with two challenges. First, time series of animal locations are likely to arise from multiple behavioral states (e.g., directed movement, resting) that cannot be observed directly. Second, location data can be affected by measurement error, including failed location fixes. Simultaneously addressing both problems in a single statistical model is analytically and computationally challenging. To both separate behavioral states and account for measurement error, we used a two-stage modeling approach to identify resting locations of fishers (Pekania pennanti) based on GPS and accelerometer data. METHODS: We developed a two-stage modelling approach to estimate when and where GPS-collared fishers were resting for 21 separate collar deployments on 9 individuals in southern Oregon. For each deployment, we first fit independent hidden Markov models (HMMs) to the time series of accelerometer-derived activity measurements and apparent step lengths to identify periods of movement and resting. Treating the state assignments as given, we next fit a set of linear Gaussian state space models (SSMs) to estimate the location of each resting event. RESULTS: Parameter estimates were similar across collar deployments. The HMMs successfully identified periods of resting and movement with posterior state assignment probabilities greater than 0.95 for 97% of all observations. On average, fishers were in the resting state 63% of the time. Rest events averaged 5 h (4.3 SD) and occurred most often at night. The SSMs allowed us to estimate the 95% credible ellipses with a median area of 0.12 ha for 3772 unique rest events. We identified 1176 geographically distinct rest locations; 13% of locations were used on > 1 occasion and 5% were used by > 1 fisher. Females and males traveled an average of 6.7 (3.5 SD) and 7.7 (6.8 SD) km/day, respectively. CONCLUSIONS: We demonstrated that if auxiliary data are available (e.g., accelerometer data), a two-stage approach can successfully resolve both problems of latent behavioral states and GPS measurement error. Our relatively simple two-stage method is repeatable, computationally efficient, and yields directly interpretable estimates of resting site locations that can be used to guide conservation decisions.

4.
Biometrics ; 76(3): 900-912, 2020 09.
Article in English | MEDLINE | ID: mdl-31729008

ABSTRACT

Understanding drivers of temporal variation in demographic parameters is a central goal of mark-recapture analysis. To estimate the survival of migrating animal populations in migration corridors, space-for-time mark-recapture models employ discrete sampling locations in space to monitor marked populations as they move past monitoring sites, rather than the standard practice of using fixed sampling points in time. Because these models focus on estimating survival over discrete spatial segments, model parameters are implicitly integrated over the temporal dimension. Furthermore, modeling the effect of time-varying covariates on model parameters is complicated by unknown passage times for individuals that are not detected at monitoring sites. To overcome these limitations, we extended the Cormack-Jolly-Seber (CJS) framework to estimate temporally stratified survival and capture probabilities by including a discretized arrival time process in a Bayesian framework. We allow for flexibility in the model form by including temporally stratified covariates and hierarchical structures. In addition, we provide tools for assessing model fit and comparing among alternative structural models for the parameters. We demonstrate our framework by fitting three competing models to estimate daily survival, capture, and arrival probabilities at four hydroelectric dams for over 200 000 individually tagged migratory juvenile salmon released into the Snake River, USA.


Subject(s)
Bayes Theorem , Animals , Humans , Population Density , Population Dynamics , Probability
5.
Sci Total Environ ; 484: 379-89, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24050789

ABSTRACT

Toxic compounds such as organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ether flame retardants (PBDEs) have been detected in fish, birds, and aquatic mammals that live in the Columbia River or use food resources from within the river. We developed a custom microarray for largescale suckers (Catostomus macrocheilus) and used it to investigate the molecular effects of contaminant exposure on wild fish in the Columbia River. Using Significance Analysis of Microarrays (SAM) we identified 72 probes representing 69 unique genes with expression patterns that correlated with hepatic tissue levels of OCs, PCBs, or PBDEs. These genes were involved in many biological processes previously shown to respond to contaminant exposure, including drug and lipid metabolism, apoptosis, cellular transport, oxidative stress, and cellular chaperone function. The relation between gene expression and contaminant concentration suggests that these genes may respond to environmental contaminant exposure and are promising candidates for further field and laboratory studies to develop biomarkers for monitoring exposure of wild fish to contaminant mixtures found in the Columbia River Basin. The array developed in this study could also be a useful tool for studies involving endangered sucker species and other sucker species used in contaminant research.


Subject(s)
Cypriniformes/physiology , Environmental Monitoring , Gene Expression/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cypriniformes/genetics , Flame Retardants/metabolism , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/toxicity , Hydrocarbons, Chlorinated/metabolism , Hydrocarbons, Chlorinated/toxicity , Pesticides/metabolism , Pesticides/toxicity , Polychlorinated Biphenyls/metabolism , Polychlorinated Biphenyls/toxicity , Rivers/chemistry , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL