Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(6): 2800-2817, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36806960

ABSTRACT

RecA-mediated homologous recombination (HR) is a key mechanism for genome maintenance and plasticity in bacteria. It proceeds through RecA assembly into a dynamic filament on ssDNA, the presynaptic filament, which mediates DNA homology search and ordered DNA strand exchange. Here, we combined structural, single molecule and biochemical approaches to characterize the ATP-dependent assembly mechanism of the presynaptic filament of RecA from Streptococcus pneumoniae (SpRecA), in comparison to the Escherichia coli RecA (EcRecA) paradigm. EcRecA polymerization on ssDNA is assisted by the Single-Stranded DNA Binding (SSB) protein, which unwinds ssDNA secondary structures that block EcRecA nucleofilament growth. We report by direct microscopic analysis of SpRecA filamentation on ssDNA that neither of the two paralogous pneumococcal SSBs could assist the extension of SpRecA nucleopolymers. Instead, we found that the conserved RadA helicase promotes SpRecA nucleofilamentation in an ATP-dependent manner. This allowed us to solve the atomic structure of such a long native SpRecA nucleopolymer by cryoEM stabilized with ATPγS. It was found to be equivalent to the crystal structure of the EcRecA filament with a marked difference in how RecA mediates nucleotide orientation in the stretched ssDNA. Then, our results show that SpRecA and EcRecA HR activities are different, in correlation with their distinct ATP-dependent ssDNA binding modes.


Subject(s)
Rec A Recombinases , Streptococcus pneumoniae , Adenosine Triphosphate/metabolism , DNA/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Rec A Recombinases/metabolism , Rec A Recombinases/ultrastructure , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Cryoelectron Microscopy
2.
Biochim Biophys Acta Biomembr ; 1861(2): 466-477, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30444973

ABSTRACT

Membrane protein (MP) complexes play key roles in all living cells. Their structural characterisation is hampered by difficulties in purifying and crystallising them. Recent progress in electron microscopy (EM) have revolutionised the field, not only by providing higher-resolution structures for previously characterised MPs but also by yielding first glimpses into the structure of larger and more challenging complexes, such as bacterial secretion systems. However, the resolution of pioneering EM structures may be difficult and their interpretation requires clues regarding the overall organisation of the complexes. In this context, we present BAmSA, a new method for localising transmembrane (TM) regions in MP complexes, using a general procedure that allows tagging them without resorting to neither genetic nor chemical modification. Labels bound to TM regions can be visualised directly on raw negative-stain EM images, on class averages, or on three-dimensional reconstructions, providing a novel strategy to explore the organisation of MP complexes.


Subject(s)
Cell Membrane/ultrastructure , Membrane Proteins/ultrastructure , Microscopy, Electron , Polymers/chemistry , Streptavidin/chemistry , Animals , Biotinylation , Cattle , Electron Transport Complex III/metabolism , Escherichia coli Proteins/metabolism , Lipoproteins/metabolism , Models, Molecular , Negative Staining
SELECTION OF CITATIONS
SEARCH DETAIL
...