Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Expert Opin Emerg Drugs ; : 1-20, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38988318

ABSTRACT

INTRODUCTION: Since its discovery in the early 1900s, sickle cell disease (SCD) has contributed significantly to the scientific understanding of hemoglobin and hemoglobinopathies. Despite this, now almost a century later, optimal medical management and even curative options remain limited. Encouragingly, in the last decade, there has been a push toward advancing the care for individuals with SCD and a diversifying interest in options to manage this disorder. AREAS COVERED: Here, we review the current state of disease modifying therapies for SCD including fetal hemoglobin inducers, monoclonal antibodies, anti-inflammatory modulators, and enzyme activators. We also discuss current curative strategies with specific interest in transformative gene therapies. EXPERT OPINION: SCD is a chronic, progressive disease that despite a century of clinical description, only now is seeing a growth and advance in therapeutic options to improve the lifespan and quality of life for individuals with SCD. We anticipate newly designed and even repurposed therapies that may work as a single agent or combination agents to tackle the progression of SCD. The vast majority of individuals living with SCD are unlikely to receive gene therapy, therefore improved disease management is critical even for those that may ultimately chose to pursue a potentially curative strategy.

2.
Crit Rev Oncol Hematol ; 197: 104347, 2024 May.
Article in English | MEDLINE | ID: mdl-38583546

ABSTRACT

Asparaginase is essential in the initial management of acute lymphoblastic leukemia (ALL) but frequently leads to venous thromboembolism (VTE). Using anticoagulants for primary VTE prevention has been studied with no consensus. We conducted a systematic literature search in PubMed, Scopus, and Web of science and performed random-effect meta-analysis using Mantel-Haenszel method in RevMan 5.4 to analyze primary pharmacological thromboprophylaxis during asparaginase treatment in early-phase (induction, consolidation, or intensification phase) therapy in patients with ALL with all ages and followed with subgroup analysis by age. Meta-analysis of 13 articles describing the effect of antithrombin supplementation in 1375 patients showed that antithrombin prophylaxis decreases the risk of VTE by 43% (RR, 0.57; 95% CI, 0.38 - 0.83; p=0.004), with mild heterogeneity (I2=35%, p=0.10) and moderate certainty by GRADE. 8 articles included for meta-analysis of low-molecular weight heparin (LMWH) treatment in 612 patients showed that it decreased the risk of VTE by nearly 40% (RR, 0.61; 95% CI, 0.45 - 0.81; p=0.00081), with minimal heterogeneity (I2=14%, p=0.31) but low certainty. Subgroup analysis showed that only prophylaxis with antithrombin supplementation significantly decreased the VTE rate in adult patients with moderate certainty. In pediatric patients, one nonrandomized prospective study showed that LMWH combined with antithrombin has a better thromboprophylaxis effect than antithrombin alone. In the PREVAPIX-ALL trial, prophylaxis with direct factor Xa inhibitor Apixaban did not benefit children younger than 18 years except for cases of obesity. We concluded that thromboprophylaxis with antithrombin is effective in ALL patients older than 18 years during the early phase of therapy, and LMWH combined with antithrombin supplementation might be effective for pediatric patients with ALL. Apixaban is effective in pediatric ALL patients with obesity and needs further study in other high-risk patients.


Subject(s)
Asparaginase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Venous Thromboembolism , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Asparaginase/adverse effects , Asparaginase/administration & dosage , Asparaginase/therapeutic use , Venous Thromboembolism/prevention & control , Venous Thromboembolism/etiology , Anticoagulants/therapeutic use , Anticoagulants/administration & dosage , Heparin, Low-Molecular-Weight/therapeutic use , Heparin, Low-Molecular-Weight/administration & dosage , Antithrombins/administration & dosage , Antithrombins/therapeutic use , Antithrombins/adverse effects
4.
Pediatr Blood Cancer ; 70(5): e30274, 2023 05.
Article in English | MEDLINE | ID: mdl-36860093

ABSTRACT

OBJECTIVE: To evaluate attitudes toward vaccination and vaccine uptake regarding coronavirus disease 2019 (COVID-19) among pediatric patients with sickle cell disease (SCD) and their caregivers. PROCEDURE: Adolescent patients and caregivers of children with SCD were surveyed during routine clinic visits; we then conducted a logistic regression analysis to understand differences in vaccine status, while qualitative responses were coded thematically. RESULTS: Among respondents, the overall vaccination rate among adolescents and caregivers was 49% and 52%, respectively. Among the unvaccinated, 60% and 68% of adolescents and caregivers, respectively, preferred to remain unvaccinated, most commonly due to lack of perceived personal benefit from vaccination or mistrust in the vaccine. Multivariate logistic regression analysis showed that child's age (odds ratio [OR] = 1.1, 95% confidence interval [CI]: 1.0-1.2, p < .01) and caregiver education (measured by the Economic Hardship Index [EHI] score, OR = 0.76, 95% CI: 0.74-0.78, p < .05) were independent predictors of getting vaccinated. CONCLUSION: Despite the increased risk of severe illness due to COVID-19 in patients with SCD, vaccine hesitancy remains high in this population of families whose children have SCD. Fortunately, the reasons cited for deferring vaccination among those who are unvaccinated were largely due to barriers that may be overcome with quality communication around the utility of the vaccine and information about vaccine safety.


Subject(s)
Anemia, Sickle Cell , COVID-19 , Vaccines , Adolescent , Humans , Child , COVID-19 Vaccines , Caregivers , COVID-19/epidemiology , COVID-19/prevention & control , Health Knowledge, Attitudes, Practice , Vaccination , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/therapy
5.
J Pediatr Hematol Oncol ; 44(3): e812-e815, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35319513

ABSTRACT

The understanding of coronavirus disease 2019 (COVID-19) immune dysregulation is evolving. Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with alternations in both innate and adaptive immunity, probably caused by a complex interplay of genetics and environmental exposure with various triggers. A rare hematological complication of SLE as well as recently reported in an adult with COVID-19 is thrombotic thrombocytopenic purpura. We report a pediatric case with features suggestive of the multisystem inflammatory syndrome in children with coronary artery ectasia, thrombotic thrombocytopenic purpura, and new-onset SLE.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Purpura, Thrombotic Thrombocytopenic , Adult , COVID-19/complications , COVID-19/diagnosis , Child , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Purpura, Thrombotic Thrombocytopenic/complications , Purpura, Thrombotic Thrombocytopenic/diagnosis , Systemic Inflammatory Response Syndrome/complications
8.
J Pediatr Hematol Oncol ; 43(8): e1241-e1243, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33369996

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has become the worst pandemic in modern history. The lack of prior immunity to the virus has resulted in a high mortality rate, though children have fared better than adults, overall. We present a case of a child who developed B-cell acute lymphoblastic leukemia 1 week following a symptomatic COVID-19 infection. It is possible that this viral infection provided the "second hit" posited to occur in pediatric leukemogenesis as proposed by Dr Greaves, with his initial viral exposure occurring several weeks earlier.


Subject(s)
COVID-19/complications , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , SARS-CoV-2/isolation & purification , COVID-19/transmission , COVID-19/virology , Child , Humans , Male , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/virology , Prognosis
9.
Pediatr Blood Cancer ; 67(12): e28725, 2020 12.
Article in English | MEDLINE | ID: mdl-32969165

ABSTRACT

Treatment of refractory Evans syndrome (ES) remains a challenge in hematology practice. Due to rarity of this condition, evidence-based approaches are limited and often treatment choices stem from small case series or anecdotal experiences. There is mounting evidence that some patients have genetic defects that could be targeted with promising preliminary results. Here, we describe three very refractory pediatric ES cases treated on bortezomib without adverse effects. Two of the three patients had dramatic and long-lasting recovery that started following the initial doses of the drug. Clinical trials to assess the role of bortezomib in ES treatment are warranted.


Subject(s)
Anemia, Hemolytic, Autoimmune/drug therapy , Antineoplastic Agents/therapeutic use , Bortezomib/therapeutic use , Drug Resistance/drug effects , Steroids/pharmacology , Thrombocytopenia/drug therapy , Adolescent , Anemia, Hemolytic, Autoimmune/pathology , Child , Humans , Infant , Male , Prognosis , Thrombocytopenia/pathology
11.
Cancer Discov ; 5(11): 1178-93, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26359368

ABSTRACT

UNLABELLED: Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation is insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacologic disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. SIGNIFICANCE: Intensification of mutant RAS signaling through copy-number imbalances is commonly associated with transformation. We show that NF2/merlin inactivation augments mutant RAS signaling by promoting YAP/TEAD-driven transcription of oncogenic and wild-type RAS, resulting in greater MAPK output and increased sensitivity to MEK inhibitors.


Subject(s)
Gene Deletion , Genes, ras , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Neurofibromin 2/genetics , Nuclear Proteins/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , Cell Cycle Proteins , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromosome Deletion , Chromosomes, Human, Pair 22 , DNA Copy Number Variations , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Order , Gene Targeting , Humans , Mice , Mice, Transgenic , Models, Biological , Neoplasm Staging , Nucleotide Motifs , Position-Specific Scoring Matrices , Promoter Regions, Genetic , Protein Binding , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Transcriptional Activation
12.
Nature ; 480(7377): 387-90, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22113612

ABSTRACT

Activated RAS promotes dimerization of members of the RAF kinase family. ATP-competitive RAF inhibitors activate ERK signalling by transactivating RAF dimers. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumour-specific inhibition of ERK signalling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbour mutant BRAF(V600E). However, resistance invariably develops. Here, we identify a new resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61-kDa variant form of BRAF(V600E), p61BRAF(V600E), which lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) shows enhanced dimerization in cells with low levels of RAS activation, as compared to full-length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signalling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumours of six of nineteen patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signalling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.


Subject(s)
Alternative Splicing/genetics , Drug Resistance, Neoplasm/genetics , Protein Multimerization/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Exons/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Indoles/pharmacology , MAP Kinase Signaling System/drug effects , Melanoma/enzymology , Melanoma/metabolism , Melanoma/pathology , Mice , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Multimerization/drug effects , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/chemistry , Sulfonamides/pharmacology , Vemurafenib
13.
Proc Natl Acad Sci U S A ; 107(33): 14903-8, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20668238

ABSTRACT

Tumors with mutant BRAF and some with mutant RAS are dependent upon ERK signaling for proliferation, and their growth is suppressed by MAPK/ERK kinase (MEK) inhibitors. In contrast, tumor cells with human EGF receptor (HER) kinase activation proliferate in a MEK-independent manner. These findings have led to the development of RAF and MEK inhibitors as anticancer agents. Like MEK inhibitors, the RAF inhibitor PLX4032 inhibits the proliferation of BRAF(V600E) tumor cells but not that of HER kinase-dependent tumors. However, tumors with RAS mutation that are sensitive to MEK inhibition are insensitive to PLX4032. MEK inhibitors inhibit ERK phosphorylation in all normal and tumor cells, whereas PLX4032 inhibits ERK signaling only in tumor cells expressing BRAF(V600E). In contrast, the drug activates MEK and ERK phosphorylation in cells with wild-type BRAF. In BRAF(V600E) tumor cells, MEK and RAF inhibitors affect the expression of a common set of genes. PLX4032 inhibits ERK signaling output in mutant BRAF cells, whereas it transiently activates the expression of these genes in tumor cells with wild-type RAF. Thus, PLX4032 inhibits ERK signaling output in a mutant BRAF-selective manner. These data explain why the drug selectively inhibits the growth of mutant BRAF tumors and suggest that it will not cause toxicity resulting from the inhibition of ERK signaling in normal cells. This selectivity may lead to a broader therapeutic index and help explain the greater antitumor activity observed with this drug than with MEK inhibitors.


Subject(s)
Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Indoles/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Signal Transduction/drug effects , Sulfonamides/pharmacology , Amino Acid Substitution , Apoptosis/drug effects , Benzamides/pharmacology , Blotting, Western , Cell Line, Tumor , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , G1 Phase/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Oligonucleotide Array Sequence Analysis , Phosphorylation/drug effects , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Vemurafenib
14.
Cancer Res ; 70(14): 5901-11, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20570890

ABSTRACT

Mutations in RAS proteins occur widely in human cancer. Prompted by the confirmation of KRAS mutation as a predictive biomarker of response to epidermal growth factor receptor (EGFR)-targeted therapies, limited clinical testing for RAS pathway mutations has recently been adopted. We performed a multiplatform genomic analysis to characterize, in a nonbiased manner, the biological, biochemical, and prognostic significance of Ras pathway alterations in colorectal tumors and other solid tumor malignancies. Mutations in exon 4 of KRAS were found to occur commonly and to predict for a more favorable clinical outcome in patients with colorectal cancer. Exon 4 KRAS mutations, all of which were identified at amino acid residues K117 and A146, were associated with lower levels of GTP-bound RAS in isogenic models. These same mutations were also often accompanied by conversion to homozygosity and increased gene copy number, in human tumors and tumor cell lines. Models harboring exon 4 KRAS mutations exhibited mitogen-activated protein/extracellular signal-regulated kinase kinase dependence and resistance to EGFR-targeted agents. Our findings suggest that RAS mutation is not a binary variable in tumors, and that the diversity in mutant alleles and variability in gene copy number may also contribute to the heterogeneity of clinical outcomes observed in cancer patients. These results also provide a rationale for broader KRAS testing beyond the most common hotspot alleles in exons 2 and 3.


Subject(s)
Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Exons , Genes, ras , Mutation , Adenocarcinoma/enzymology , Animals , Benzamides/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/enzymology , Comparative Genomic Hybridization , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Genotype , Humans , Mass Spectrometry , Mice , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinases/metabolism , Mutagenesis, Site-Directed , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , ras Proteins/biosynthesis , ras Proteins/genetics
15.
Cancer Res ; 68(22): 9375-83, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19010912

ABSTRACT

Hyperactivated extracellular signal-regulated kinase (ERK) signaling is common in human cancer and is often the result of activating mutations in BRAF, RAS, and upstream receptor tyrosine kinases. To characterize the mitogen-activated protein kinase/ERK kinase (MEK)/ERK dependence of lung cancers harboring BRAF kinase domain mutations, we screened a large panel of human lung cancer cell lines (n = 87) and tumors (n = 916) for BRAF mutations. We found that non-small cell lung cancers (NSCLC) cells with both V600E and non-V600E BRAF mutations were selectively sensitive to MEK inhibition compared with those harboring mutations in epidermal growth factor receptor (EGFR), KRAS, or ALK and ROS kinase fusions. Supporting its classification as a "driver" mutation in the cells in which it is expressed, MEK inhibition in (V600E)BRAF NSCLC cells led to substantial induction of apoptosis, comparable with that seen with EGFR kinase inhibition in EGFR mutant NSCLC models. Despite high basal ERK phosphorylation, EGFR mutant cells were uniformly resistant to MEK inhibition. Conversely, BRAF mutant cell lines were resistant to EGFR inhibition. These data, together with the nonoverlapping pattern of EGFR and BRAF mutations in human lung cancer, suggest that these lesions define distinct clinical entities whose treatment should be guided by prospective real-time genotyping. To facilitate such an effort, we developed a mass spectrometry-based genotyping method for the detection of hotspot mutations in BRAF, KRAS, and EGFR. Using this assay, we confirmed that BRAF mutations can be identified in a minority of NSCLC tumors and that patients whose tumors harbor BRAF mutations have a distinct clinical profile compared with those whose tumors harbor kinase domain mutations in EGFR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Extracellular Signal-Regulated MAP Kinases/physiology , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Female , Humans , MAP Kinase Signaling System , Male , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL