Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Audiol ; : 1-7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742487

ABSTRACT

OBJECTIVE: The objective is to evaluate the electroacoustic performance of the B250 transducer and to compare it with the two most widely used audiometric transducers B71 and B81. DESIGN: The electroacoustic performance was evaluated in terms of sensitivity level, distortion, maximum hearing level and electrical impedance. STUDY SAMPLE: Six B250 prototype transducers were evaluated and compared with published data of B71 and B81 together with complementary measurements of maximum hearing level at 125 Hz and phase of electrical impedance. Differences in reference equivalent threshold vibratory force levels were estimated by comparing hearing threshold measurements of 60 healthy ears using B81 and B250. RESULTS: B250 has approximately 27 dB higher sensitivity levels than both B71 and B81 at 250 Hz and can generate higher maximum hearing level at low frequencies: 11.8 to 35.8 dB (125-1000 Hz) higher than B71, and 1.4 to 18.6 dB (125-750 Hz) higher than B81. The maximum average difference in reference threshold force levels was 13.5 ± 8.7 dB higher for B250 at 250 Hz compared to B81. CONCLUSIONS: B250 can produce higher output force with less distortion than B71 and B81, especially at 125 and 250 Hz, which could possibly improve low frequency investigations of the audio-vestibular system.

2.
Int J Audiol ; : 1-7, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602203

ABSTRACT

OBJECTIVE: To objectively measure audibility in patients wearing bone conduction devices (BCDs) with a new approach using a skin microphone at the patient's forehead. DESIGN: The skin microphone was attached by a softband and shielded by an earmuff. This set-up was confirmed not to be influenced by neither noise floor nor sound bypassing the BCD. Sound field warble tones were used for measuring aided hearing thresholds and maximum power output (MPO) whereas an international speech test signal (ISTS) was presented at different speech levels. STUDY SAMPLE: 29 patients were tested (two were bilateral), 19 used percutaneous, eight used active transcutaneous and two used passive transcutaneous devices. RESULTS: The skin microphone responses at ISTS levels, hearing threshold and MPO, could be obtained in all patients. Two patients with poor audibility are highlighted in this article as examples. After adjusting the gain of the BCD, they were retested with the skin microphone (for verification) and with speech-in-noise tests (for validation). Both tests confirmed an improved audibility after the adjustments. CONCLUSION: In summary, the proposed measurement of audibility of speech using a skin microphone is a promising method that can be used in a clinical setting for all types of BCDs.

3.
Int J Audiol ; 62(4): 357-361, 2023 04.
Article in English | MEDLINE | ID: mdl-35238713

ABSTRACT

OBJECTIVE: Objective measurement of audibility (verification) using bone conduction devices (BCDs) has long remained an elusive problem for BCDs. For air conduction hearing aids there are well-defined and often used objective methods, and the aim of this study is to develop an objective method for BCDs. DESIGN: In a novel setup for audibility measurements of bone-anchored hearing aid (BAHA) attached via a soft band, we used a skin microphone (SM) on the forehead measuring in-situ sound field thresholds, maximum power output (MPO) and international speech test signal (ISTS) responses. STUDY SAMPLE: Five normal-hearing persons. RESULT: Using the electrical output of SM it was possible to objectively measure the audibility of a skin drive BCD, presented as an eSPL-o-gram showing thresholds, MPO and ISTS response. Normalised eSPL-o-gram was verified against corresponding FL-o-grams (corresponding force levels from skull simulator and artificial mastoid (AM)). CONCLUSION: The proposed method with the SM can be used for objective measurements of the audibility of any BCDs based on thresholds, MPO and speech response allowing for direct comparisons of hearing and BCD output on the same graph using an eSPL-o-gram. After normalisation to hearing thresholds, the audibility can be assessed without the need for complicated calibration procedures.


Subject(s)
Hearing Aids , Humans , Bone Conduction/physiology , Pilot Projects , Hearing , Hearing Loss, Conductive/diagnosis , Hearing Loss, Conductive/rehabilitation
4.
Hear Res ; 421: 108503, 2022 08.
Article in English | MEDLINE | ID: mdl-35490057

ABSTRACT

Active transcutaneous bone conduction devices are a type of bone conduction device developed to keep the skin intact and provide direct bone conduction stimulation. The Bone Conduction Implant (BCI) is such a device and has been implanted in 16 patients. The objective of this paper is to give a broad overview of the BCI development to the final results of 13 patients at 5-year follow-up. Follow-up of these patients included audiological performance investigations, questionnaires, as well as safety evaluation and objective functionality testing of the device. Among those audiological measurements were sound field warble tone thresholds, speech recognition threshold (SRT), speech recognition score (SRS) and signal to noise ratio threshold (SNR-threshold). The accumulated implant time for all 16 patients was 113 years in February 2022. During this time, no serious adverse events have occurred. The functional improvement for the 13 patients reported in this paper was on average 29.5 dB (average over 0.5, 1, 2 and 4 kHz), while the corresponding effective gain was -12.4 dB. The SRT improvement was 24.5 dB and the SRS improvement was 38.1%, while the aided SNR-threshold was on average -6.4 dB. It was found that the BCI can give effective and safe hearing rehabilitation for patients with conductive and mild-to-moderate mixed hearing loss.


Subject(s)
Hearing Aids , Hearing Loss, Mixed Conductive-Sensorineural , Hearing Loss , Speech Perception , Audiometry , Bone Conduction/physiology , Follow-Up Studies , Hearing Loss, Conductive , Hearing Loss, Mixed Conductive-Sensorineural/diagnosis , Hearing Loss, Mixed Conductive-Sensorineural/therapy , Humans , Treatment Outcome
5.
Med Devices (Auckl) ; 14: 225-237, 2021.
Article in English | MEDLINE | ID: mdl-34267559

ABSTRACT

OBJECTIVE: Bone conduction (BC) stimulation is rarely used for clinical testing of vestibular evoked myogenic potentials (VEMPs) due to the limitations of conventional stimulation alternatives. The aim of this study is to compare VEMP using the new B250 transducer with the Minishaker and air conduction (AC) stimulation. METHODS: Thirty normal subjects between 20 and 37 years old and equal gender distribution were recruited, 15 for ocular VEMP and 15 for cervical VEMP. Four stimulation conditions were compared: B250 on the mastoid (FM); Minishaker and B250 on the forehead (FZ); and AC stimulation using an insert earphone. RESULTS: It was found that B250 at FM required a statistically significant lower hearing level than with AC stimulation, in average 41 dB and 35 dB lower for ocular VEMP and cervical VEMP, respectively, but gave longer n10 (1.1 ms) and n23 (1.6 ms). No statistical difference was found between B250 at FM and Minishaker at FZ. CONCLUSION: VEMP stimulated with B250 at FM gave similar response as the Minishaker at FZ and for a much lower hearing level than AC stimulation using insert earphones.

6.
Audiol Neurootol ; 25(5): 263-275, 2020.
Article in English | MEDLINE | ID: mdl-32268333

ABSTRACT

BACKGROUND: The bone conduction implant (BCI) is an active transcutaneous bone conduction device where the transducer has direct contact to the bone, and the skin is intact. Sixteen patients have been implanted with the BCI with a planned follow-up of 5 years. This study reports on hearing, quality of life, and objective measures up to 36 months of follow-up in 10 patients. METHOD: Repeated measures were performed at fitting and after 1, 3, 6, 12, and 36 months including sound field warble tone thresholds, speech recognition thresholds in quiet, speech recognition score in noise, and speech-to-noise thresholds for 50% correct words with adaptive noise. Three quality of life questionnaires were used to capture the benefit from the intervention, appreciation from different listening situations, and the ability to interact with other people when using the BCI. The results were compared to the unaided situation and a Ponto Pro Power on a soft band. The implant functionality was measured by nasal sound pressure, and the retention force from the audio processor against the skin was measured using a specially designed audio processor and a force gauge. RESULTS: Audiometry and quality of life questionnaires using the BCI or the Ponto Pro Power on a soft band were significantly improved compared to the unaided situation and the results were statistically supported. There was generally no significant difference between the two devices. The nasal sound pressure remained stable over the study period and the force on the skin from the audio processor was 0.71 ± 0.22 N (mean ± 1 SD). CONCLUSION: The BCI improves the hearing ability for tones and speech perception in quiet and in noise for the indicated patients. The results are stable over a 3-year period, and the patients subjectively report a beneficial experience from using the BCI. The transducer performance and contact to the bone is unchanged over time, and the skin area under the audio processor remains without complications during the 3-year follow-up.


Subject(s)
Bone Conduction , Hearing Aids , Hearing Loss, Conductive/rehabilitation , Hearing Loss, Mixed Conductive-Sensorineural/rehabilitation , Hearing/physiology , Quality of Life , Speech Perception/physiology , Adolescent , Adult , Aged , Audiometry , Female , Follow-Up Studies , Hearing Loss, Conductive/physiopathology , Hearing Loss, Mixed Conductive-Sensorineural/physiopathology , Hearing Tests , Humans , Male , Middle Aged , Surveys and Questionnaires , Young Adult
7.
Int J Audiol ; 58(12): 945-955, 2019 12.
Article in English | MEDLINE | ID: mdl-31710259

ABSTRACT

Objective: The objective of this study is to evaluate its safety and effectiveness of the bone conduction implant (BCI) having an implanted transducer and to review similar bone conduction devices.Design: This is a consecutive prospective case series study where the patients were evaluated after 1, 3, 6 and 12 months. Outcome measures were focussed on intraoperative and postoperative safety, the effectiveness of the device in terms of audiological performance and patient's experience.Study sample: Sixteen patients with average age of 40.2 (range 18-74) years have been included. Thirteen patients were operated in Gothenburg and three in Stockholm.Results: It was found that the procedure for installing the BCI is safe and the transmission condition was stable over the follow-up time. No serious adverse events or severe adverse device effects occurred. The hearing sensitivity, speech in noise and the self-assessment as compared with the unaided condition improved significantly with the BCI. These patients also performed similar or better than with a conventional bone conduction reference device on a softband.Conclusions: In summary, it was found that the BCI can provide a safe and effective hearing rehabilitation alternative for patients with mild-to-moderate conductive or mixed hearing impairments.


Subject(s)
Bone Conduction , Hearing Aids , Hearing Loss, Conductive/surgery , Prosthesis Implantation/methods , Adolescent , Adult , Aged , Female , Follow-Up Studies , Hearing Loss, Conductive/rehabilitation , Humans , Male , Middle Aged , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...