Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32984269

ABSTRACT

Bone reconstruction techniques are mainly based on the use of tissue grafts and artificial scaffolds. The former presents well-known limitations, such as restricted graft availability and donor site morbidity, while the latter commonly results in poor graft integration and fixation in the bone, which leads to the unbalanced distribution of loads, impaired bone formation, increased pain perception, and risk of fracture, ultimately leading to recurrent surgeries. In the past decade, research efforts have been focused on the development of innovative bone substitutes that not only provide immediate mechanical support, but also ensure appropriate graft anchoring by, for example, promoting de novo bone tissue formation. From the countless studies that aimed in this direction, only few have made the big jump from the benchtop to the bedside, whilst most have perished along the challenging path of clinical translation. Herein, we describe some clinically successful cases of bone device development, including biological glues, stem cell-seeded scaffolds, and gene-functionalized bone substitutes. We also discuss the ventures that these technologies went through, the hindrances they faced and the common grounds among them, which might have been key for their success. The ultimate objective of this perspective article is to highlight the important aspects of the clinical translation of an innovative idea in the field of bone grafting, with the aim of commercially and clinically informing new research approaches in the sector.

2.
Stem Cells Int ; 2018: 4126379, 2018.
Article in English | MEDLINE | ID: mdl-29853912

ABSTRACT

Adipose tissue-derived stem cells (ASCs) are a promising tool for the treatment of bone diseases or skeletal lesions, thanks to their ability to potentially repair damaged tissue. One of the major limitations of ASCs is represented by the necessity to be isolated and expanded through in vitro culture; thus, a strong interest was generated by the adipose stromal vascular fraction (SVF), the noncultured fraction of ASCs. SVF is a heterogeneous cell population, directly obtained after collagenase treatment of adipose tissue. In order to investigate and compare the bone-regenerative potential of SVF and ASCs, they were plated on SmartBone®, a xenohybrid bone scaffold, already used in clinical practice with successful results. We showed that SVF plated on SmartBone, in the presence of osteogenic factors, had better osteoinductive capabilities than ASCs, in terms of differentiation into bone cells, mineralization, and secretion of soluble factors stimulating osteoblasts. Indeed, we observed an increasing area of new tissue over time, with and without OM. These data strongly support an innovative idea for the use of adipose SVF and bone scaffolds to promote tissue regeneration and repair, also thanks to an easier cell management preparation that allows a potentially larger use in clinical applications.

3.
Int J Pharm ; 523(2): 534-544, 2017 May 25.
Article in English | MEDLINE | ID: mdl-27769886

ABSTRACT

The ideal scaffold for bone regeneration is required to be highly porous, non-immunogenic, biostable until the new tissue formation, bioresorbable and osteoconductive. This study aimed at investigating the process of new bone formation in patients treated with granular SmartBone® for sinus augmentation, providing an extensive histologic analysis. Five biopsies were collected at 4-9 months post SmartBone® implantation and processed for histochemistry and immunohistochemistry. Histomorphometric analysis was performed. Bone-particle conductivity index (BPCi) was used to assess SmartBone® osteoconductivity. At 4 months, SmartBone® (12%) and new bone (43.9%) were both present and surrounded by vascularized connective tissue (37.2%). New bone was grown on SmartBone® (BPCi=0.22). At 6 months, SmartBone® was almost completely resorbed (0.5%) and new bone was massively present (80.8%). At 7 and 9 months, new bone accounted for a large volume fraction (79.3% and 67.4%, respectively) and SmartBone® was resorbed (0.5% and 0%, respectively). Well-oriented lamellae and bone scars, typical of mature bone, were observed. In all the biopsies, bone matrix biomolecules and active osteoblasts were visible. The absence of inflammatory cells confirmed SmartBone® biocompatibility and non-immunogenicity. These data indicate that SmartBone® is osteoconductive, promotes fast bone regeneration, leading to mature bone formation in about 7 months.


Subject(s)
Bone Matrix , Bone Regeneration , Bone Substitutes , Maxillary Sinus/surgery , Polyesters/chemistry , Tissue Scaffolds , Animals , Cattle , Gelatin/chemistry , Humans
4.
J Tissue Eng Regen Med ; 9(7): 847-51, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24596180

ABSTRACT

In this communication, we introduce boron nitride nanotube (BNNT)-functionalised muscle cell/microfibre mesh constructs, obtained via tissue engineering, as a three-dimensional (3D) platform to study a wireless stimulation system for electrically responsive cells and tissues. Our stimulation strategy exploits the piezoelectric behaviour of some classes of ceramic nanoparticles, such as BNNTs, able to polarize under mechanical stress, e.g. using low-frequency ultrasound (US). In the microfibre scaffolds, C2C12 myoblasts were able to differentiate into viable myotubes and to internalize BNNTs, also upon US irradiation, so as to obtain a nanotech-assisted 3D in vitro model. We then tested our stimulatory system on 2D and 3D cellular models by investigating the expression of connexin 43 (Cx43), as a molecule involved in cell crosstalk and mechanotransduction, and myosin, as a myogenic differentiation marker. Cx43 gene expression revealed a marked model dependency. In control samples (without US and/or BNNTs), Cx43 was upregulated under 2D culture conditions (10.78 ± 1.05-fold difference). Interactions with BNNTs increased Cx43 expression in 3D samples. Cx43 mRNA dropped in 2D under the 'BNNTs + US' regimen, while it was best enhanced in 3D samples (3.58 ± 1.05 vs 13.74 ± 1.42-fold difference, p = 0.0001). At the protein level, the maximal expressions of Cx43 and myosin were detected in the 3D model. In contrast with the 3D model, in 2D cultures, BNNTs and US exerted a synergistic depletive effect upon myosin synthesis. These findings indicate that model dimensionality and stimulatory regimens can strongly affect the responses of signalling and differentiation molecules, proving the importance of developing proper in vitro platforms for biological modelling.


Subject(s)
Boron Compounds/chemistry , Mechanotransduction, Cellular , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Antigens, Differentiation/biosynthesis , Cell Line , Connexin 43/biosynthesis , Gene Expression Regulation , Mice , Muscle Fibers, Skeletal/cytology , Myoblasts, Skeletal/cytology , Myosins/biosynthesis , Nanotubes
5.
Biomed Mater ; 9(4): 045007, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25029413

ABSTRACT

In this study, we performed a complete histologic analysis of constructs based on large diameter ( >100 µm) poly-L-lactic acid (PLLA) microfibers obtained via dry-wet spinning and rat Mesenchymal Stromal Cells (rMSCs) differentiated towards the osteogenic lineage, using acrylic resin embedding. In many synthetic polymer-based microfiber meshes, ex post processability of fiber/cell constructs for histologic analysis may face deterring difficulties, leading to an incomplete investigation of the potential of these scaffolds. Indeed, while polymeric nanofiber (fiber diameter = tens of nanometers)/cell constructs can usually be embedded in common histologic media and easily sectioned, preserving the material structure and the antigenic reactivity, histologic analysis of large polymeric microfiber/cell constructs in the literature is really scant. This affects microfiber scaffolds based on FDA-approved and widely used polymers such as PLLA and its copolymers. Indeed, for such constructs, especially those with fiber diameter and fiber interspace much larger than cell size, standard histologic processing is usually inefficient due to inhomogeneous hardness and lack of cohesion between the synthetic and the biological phases under sectioning. In this study, the microfiber/MSC constructs were embedded in acrylic resin and the staining/reaction procedures were calibrated to demonstrate the possibility of successfully employing histologic methods in tissue engineering studies even in such difficult cases. We histologically investigated the main osteogenic markers and extracellular matrix molecules, such as alkaline phosphatase, osteopontin, osteocalcin, TGF-ß1, Runx2, Collagen type I and the presence of amorphous, fibrillar and mineralized matrix. Biochemical tests were employed to confirm our findings. This protocol permitted efficient sectioning of the treated constructs and good penetration of the histologic reagents, thus allowing distribution and expression of almost all the tested molecules to be revealed. Our results demonstrated that it is possible to perform histologic analyses of large-diameter PLLA-based microfiber scaffold/MSC constructs that face the failure of standard histologic procedures.


Subject(s)
Acrylic Resins/chemistry , Histological Techniques , Lactic Acid/chemistry , Mesenchymal Stem Cells/cytology , Polymers/chemistry , Alcian Blue/chemistry , Alkaline Phosphatase/metabolism , Animals , Calcium/chemistry , Cell Lineage , Cell Survival , DNA/analysis , Extracellular Matrix/metabolism , Femur/pathology , Humans , Osteogenesis , Periodic Acid-Schiff Reaction , Polyesters , Rats , Rats, Wistar , Tibia/pathology , Tolonium Chloride/chemistry
6.
In Vivo ; 20(6A): 697-701, 2006.
Article in English | MEDLINE | ID: mdl-17203748

ABSTRACT

Nanotechnology provides a variety of nanoscale tools for medicine. Among them nanoparticles are revolutionizing the field of drug delivery. These drug nanocarriers have the potential to enhance the therapeutic efficacy of a drug, since they can be engineered to modulate the release and the stability and to prolong the circulation time of a drug, protecting it from elimination by phagocytic cells or premature degradation. Moreover, nanoscale carriers can be tailored to accumulate in tumour cells and tissues, due to enhanced permeability and a retention effect or by active targeting using ligands designed to recognize tumour-associated antigens. Could these nanomedicine tools mark an end to the necessity for loco-regional drug delivery?


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Nanomedicine/methods , Nanoparticles/administration & dosage , Antineoplastic Agents/adverse effects , Drug Carriers , Humans , Nanoparticles/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL