Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Food Chem ; 457: 140107, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39032479

ABSTRACT

Bacillus stercoris PSSR12 (B. stercoris PE), an isolate from rice field soils, was identified via 16s rRNA sequencing. The synthesis of the inulin and inulin producing enzyme (IPE) in B. stercoris PE was verified using SDS-PAGE and FTIR. This study aimed to assess the impact of B. stercoris PE treatment on in vitro inhibition of α-amylase and α-glucosidase from traditional and commercial rice varieties of South India. Additionally, the study investigated enzymatic inhibition and mRNA expression of starch synthesis genes (RAmy1a, GBSSIa, SBEIIa, and SBEIIb). Glucose transporter gene expression (GLUT1 and GLUT4) patterns were analyzed in 3T3-L1 adipocytes to evaluate glucose uptake in B. stercoris PE treated rice varieties. The application of B. stercoris PE enhanced grain quality by imparting starch ultra-structural rigidity, inhibiting starch metabolizing enzymes, and inducing molecular changes in starch synthesis genes. This approach holds promise for managing type II diabetes mellitus and potentially reducing insulin dependence.


Subject(s)
Glucose , Inulin , Oryza , Starch , alpha-Amylases , Oryza/metabolism , Oryza/chemistry , Oryza/microbiology , Inulin/metabolism , Inulin/chemistry , Glucose/metabolism , Starch/metabolism , Starch/chemistry , alpha-Amylases/metabolism , alpha-Amylases/genetics , Bacillus/metabolism , Bacillus/genetics , Bacillus/chemistry , Mice , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Animals
2.
Int J Biol Macromol ; 273(Pt 1): 132954, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852726

ABSTRACT

This study explores the potential of liposome encapsulated silica immobilized cytochrome P450 monooxygenase (LSICY) for bioremediation of mercury (Hg2+). Current limitations in Hg2+ reduction, including sensitivity to factors like pH and cost, necessitate alternative methods. We propose LSICY as a solution, leveraging the enzymatic activities of cytochrome P450 monooxygenase (CYPM) for Hg2+ reduction through hydroxylation and oxygenation. Our investigation employs LSICY to assess its efficacy in mitigating Hg2+ toxicity in Oryza sativa (rice) plants. Gas chromatography confirmed gibberellic acid (GA) presence in the Hg2+ reducing bacteria Priestia megaterium RP1 (PMRP1), highlighting a potential link between CYP450 activity and plant health. This study demonstrates the promise of LSICY as a sustainable and effective approach for Hg2+ bioremediation, promoting a safer soil environment.


Subject(s)
Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Gibberellins , Liposomes , Mercury , Oryza , Cytochrome P-450 Enzyme System/metabolism , Gibberellins/metabolism , Gibberellins/pharmacology
3.
Cytogenet Genome Res ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906989

ABSTRACT

BACKGROUND: Development of resistance upon exposure to small doses of ionizing radiation followed by higher doses is known as radiation-induced adaptive response (RIAR). Traditionally, the induction of the RIAR phenomenon at the cellular level has been examined in cell lines, animal models, and epidemiological studies where people live in high natural background radiation. SUMMARY: The primary intention of the earlier studies was to corroborate the existence of RIAR and the mechanism involved in mediating the response surveyed by exposure to a low dose of radiation (<500 mGy) as priming dose towards the radiation protection point of view. However, the investigation has shifted the focus to understand the relevance of this phenomenon at clinically relevant set-ups (high doses in the order of Gy) and can be exploited during radiotherapy as RIAR is considered a mechanism for the development of radioresistance. Although the knowledge of molecular mechanisms at the cellular level has evolved significantly in multi-fractionated radiotherapy regimes, its relevance in developing radioresistance at low doses remains elusive. The authors recapitulate the existing knowledge on RIAR at cellular levels, specifically after low-dose exposure as an adaptive dose, and discussed its potential implications in clinical radiotherapy outcomes. KEY MESSAGES: Recent studies contributed to understand the signaling molecules, pathways, and inhibitors to mitigate RIAR-mediated radiation resistance and persistent radio-tolerance at the cellular level. Monitoring the disease progression in tumor samples or liquid biopsies before, during, and after therapy with suitable biomarkers has been proposed as a strategy to translate the phenomena into clinical scenario.

4.
Cytogenet Genome Res ; 163(3-4): 210-222, 2023.
Article in English | MEDLINE | ID: mdl-37253332

ABSTRACT

Quantification of gene expression signatures has been substantiated as a potential and rapid marker for radiation triage and biodosimetry during nuclear emergencies. Similar to the established biodosimetry assays, the gene expression assay has drawbacks such as being highly dynamic and transient, not specific to ionizing radiation, and also influenced by confounding factors such as gender, health status, lifestyle, and inflammation. In view of that, prior knowledge of baseline expression of certain candidate genes in a population could complement the discrimination of the unexposed from the exposed individuals without the need for individual pre-exposure controls. We intended to establish a baseline expression of reported radiation-responsive genes such as CDKN1A, DDB2, FDXR, and PCNA in the blood samples of healthy human participants and then compare it with diabetic/hypertension participants (as a chronic inflammatory condition) drawn from south Indian population. Further, we have examined the appropriateness of the assay for radiation triage-like situations; i.e., the expression profiles of those genes were examined in the participants who underwent X-ray-based medical imaging. Acute inflammation induced by lipopolysaccharide exposure in the blood significantly increased the fold expression of those genes (p < 0.0001) compared to the control. Whereas the basal expression level of those genes among the participants with the inflammatory condition is marginally higher than those observed in the healthy participants; despite the excess, the fold increase in those genes between the groups did not differ significantly. Consistent with the inflammatory participants, the basal expression level of those genes in the blood sample of participants who received X-radiation during neuro-interventional and computed tomography imaging is marginally higher than those observed in the pre-exposure of respective groups. Nevertheless, the fold increase in those genes did not differ significantly as the fold change fell within the two folds. Thus, overall results suggest that the utility of CDKN1A, DDB2, FDXR, and PCNA gene expression for radiation triage specific after very low-dose radiation exposure needs to be interpreted with caution for a much more reliable triage.


Subject(s)
Asian People , Triage , Humans , Proliferating Cell Nuclear Antigen , Inflammation , Gene Expression
5.
Mol Biol Rep ; 50(5): 4239-4252, 2023 May.
Article in English | MEDLINE | ID: mdl-36905404

ABSTRACT

BACKGROUND: Endometriosis is a complex gynaecological disorder that contributes to infertility, dysmenorrhea, dyspareunia, and other chronic issues. It is a multifactorial disease involving genetic, hormonal, immunological and environmental components. Endometriosis's pathogenesis remains unclear. AIM OF THE STUDY: was to analyse the polymorphisms in Interleukin 4, Interleukin 18, FCRL3 and sPLA2IIa genes to identify any significant association with the risk of endometriosis. MATERIAL AND METHODS: This study evaluated the polymorphism of -590 C/T in interleukin- 4(IL-4) gene, C607A in Interleukin - 18(IL-18) gene, -169T > C in FCRL3 gene and 763 C > G in sPLA2IIa gene in women with endometriosis. The case-control study included 150 women with endometriosis and 150 apparently healthy women as control subjects. DNA was extracted from peripheral blood leukocytes and endometriotic tissue of cases and blood samples for controls and further analysed by PCR amplification and then sequencing was carried out to find the allele and genotypes of the subjects and then to analyse the relationship between the gene polymorphisms and endometriosis. To evaluate the association of the different genotypes, 95% confidence intervals (CI) were calculated. RESULTS: Interleukin - 18 and FCRL3 gene polymorphisms of endometriotic tissue and blood samples of endometriosis (cases) showed significantly associated (OR = 4.88 [95% CI = 2.31-10.30], P > 0.0001) and (OR = 4.00 [95% CI = 2.2-7.33], P > 0.0001) when compared with normal blood samples. However, there was no significant difference in Interleukin - 4 and sPLA2IIa gene polymorphisms between control women and patients with endometriosis. CONCLUSIONS: The present study suggests that the IL-18 and FCRL3 gene polymorphisms are associated with a higher risk for endometriosis, which delivers valuable knowledge of endometriosis's pathogenesis. However, a larger sample size of patients from various ethnic backgrounds is necessary to evaluate whether these alleles have a direct effect on disease susceptibility.


Subject(s)
Endometriosis , Interleukin-18 , Interleukin-4 , Receptors, Immunologic , Female , Humans , Case-Control Studies , Endometriosis/genetics , Gene Frequency/genetics , Genetic Predisposition to Disease , Genotype , Interleukin-18/genetics , Interleukin-4/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Immunologic/genetics
6.
Article in English | MEDLINE | ID: mdl-36462795

ABSTRACT

Redox modulated pathways play important roles in out-of-field effects of ionizing radiation. We investigated how the redox environment impacts the magnitude of propagation of stressful effects from irradiated to bystander cells. Normal human fibroblasts that have incorporated [3H]-thymidine were intimately co-cultured with bystander cells in a strategy that allowed isolation of bystander cells with high purity. The antioxidant glutathione peroxidase (GPX) was maintained either at wild-type conditions or overexpressed in the bystanders. Following 24 h of coculture, levels of stress-responsive p21Waf1, p-Hdm2, and connexin43 proteins were increased in bystander cells expressing wild-type GPX relative to respective controls. These levels were significantly attenuated when GPX was ectopically overexpressed, demonstrating by direct approach the involvement of a regulator of intracellular redox homeostasis. Evidence of participation of pro-oxidant compounds was generated by exposing confluent cell cultures to low fluences of 3.7 MeV α particles in presence or absence of t-butyl hydroperoxide. By 3 h post-exposure to fluences wherein only ∼2% of cells are traversed through the nucleus by a particle track, increases in chromosomal damage were greater than expected in absence of the drug (p < 0.001) and further enhanced in its presence (p < 0.05). While maintenance and irradiation of cell cultures at low oxygen pressure (pO2 3.8 mm Hg) to mimic in vivo still supported the participation of bystander cells in responses assessed by chromosomal damage and stress-responsive protein levels (p < 0.001), the effects were attenuated compared to ambient pO2 (155 mm Hg) (p < 0.05). Together, the results show that bystander effects are attenuated at below ambient pO2 and when metabolic oxidative stress is reduced but increased when the basal redox environment tilts towards oxidizing conditions. They are consistent with bystander effects being independent of radiation dose rate.


Subject(s)
Bystander Effect , Fibroblasts , Oxidation-Reduction , Oxidative Stress , Oxygen , Radiation Exposure , Humans , Bystander Effect/radiation effects , Glutathione Peroxidase/metabolism , Oxidation-Reduction/radiation effects , Oxidative Stress/radiation effects , Partial Pressure , Radiation Exposure/adverse effects , Oxygen/adverse effects , Oxygen/analysis , Coculture Techniques , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/radiation effects
7.
World J Radiol ; 14(7): 219-228, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36160628

ABSTRACT

Coronaviruses are a diverse group of viruses that infect both animals and humans. Even though the existence of coronavirus and its infection to humans is not new, the 2019-novel coronavirus (nCoV) caused a major burden to individuals and society i.e., anxiety, fear of infection, extreme competition for hospitalization, and more importantly financial liability. The nCoV infection/disease diagnosis was based on non-specific signs and symptoms, biochemical parameters, detection of the virus using reverse-transcription polymerase chain reaction (RT-PCR), and X-ray-based imaging. This review focuses on the consolidation of potentials of X-ray-based imaging modality [chest-X radiography (CXR) and chest computed tomography (CT)] and low-dose radiation therapy (LDRT) for screening, severity, and management of COVID-19 disease. Reported studies suggest that CXR contributed significantly toward initial rapid screening/diagnosis and CT- imaging to monitor the disease severity. The chest CT has high sensitivity up to 98% and low specificity for diagnosis and severity of COVID-19 disease compared to RT-PCR. Similarly, LDRT compliments drug therapy in the early recovery/Less hospital stays by maintaining the physiological parameters better than the drug therapy alone. All the results undoubtedly demonstrated the evidence that X-ray-based technology continues to evolve and play a significant role in human health care even during the pandemic.

8.
Article in English | MEDLINE | ID: mdl-34583824

ABSTRACT

Even though the medical uses of ionizing radiation are well-acknowledged globally as vital tools for the improvement of human health, they also symbolize the major man-made sources of radiation exposure to the population. Estimation of absorbed dose and biological changes after radiation-based imaging might help to better understand the effects of low dose radiation. Because of this, we measured the Entrance Surface Dose (ESD) at different anatomical locations using Lithium tetraborate doped with manganese (Li2B4O7: Mn), recorded Dose Length Product (DLP) and Dose Area Product (DAP), analyzed Chromosomal Aberration (CA), Micronucleus (MN), gamma-H2AX (γ-H2AX), and p53ser15 proteins in the blood lymphocytes of patients (n = 267) underwent Computed Tomography (CT), Positron Emission Tomography-CT (PET/CT), and interventional procedures and healthy volunteers (n = 19). The DLP and effective doses obtained from PET/CT procedures were significantly higher (p < 0.05) when compared to CT. Fluoroscopic time and DAP were significantly higher (p < 0.05) in therapeutic compared to diagnostic interventional procedures. All the anatomical locations registered a significant amount of ESD, the ESD obtained from CT and interventional procedures were significantly (p < 0.05) higher when compared to PET/CT. Fluoroscopic time did not correlate with the ESD (eye, head, thyroid, and shoulder; R2 = 0.03). CA frequency after PET/CT was significantly higher (p < 0.001) when compared to CT and interventional procedures. MN frequency was significantly higher in 24-hs (p < 0.001) post-interventional procedure compared to 2-hs. The mean ± SD of mean fluorescence intensity of γ-H2AX and p53ser15 obtained from all subjects underwent PET/CT and interventional procedures did not show a significant difference (p > 0.05) between pre- and post-procedure. However, the relative fluorescence intensity of γ-H2AX and p53ser15 was >1 in 58.5 % and 65.8 % of subjects respectively. Large inter-individual variation and lack of correlation between physical dose and biomarkers suggest the need for robust dosimetry with a large sample size to understand the health effects of low dose radiation.


Subject(s)
Positron Emission Tomography Computed Tomography/adverse effects , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Case-Control Studies , Dose-Response Relationship, Radiation , Female , Humans , Male , Middle Aged , Young Adult
9.
Mutat Res Rev Mutat Res ; 787: 108350, 2021.
Article in English | MEDLINE | ID: mdl-34083048

ABSTRACT

Radiation triage and biological dosimetry are two initial steps in the medical management of exposed individuals following radiological accidents. Well established biodosimetry methods such as the dicentric (DC) assay, micronucleus (MN) assay, and fluorescence in-situ hybridization (FISH) translocation assay (for residual damage) have been used for this purpose for several decades. Recent advances in scoring methodology and networking among established laboratories have increased triage capacity; however, these methods still have limitations in analysing large sample numbers, particularly because of the ∼ 48 h minimum culture time required prior to analysis. Hence, there is a need for simple, and high throughput markers to identify exposed individuals in case of radiological/nuclear emergencies. In recent years, a few markers were identified, one being phosphorylated histone 2AX (γ-H2AX), which measured a nuclear foci or nuclear staining intensity that was found to be suitable for triage. Measurement of γ-H2AX foci formed at and around the sites of DNA double-strand breaks is a rapid and sensitive biodosimetry method which does not require culturing and is thus promising for the analysis of a large number of samples. In this review, we have summarized the recent developments of γ-H2AX assay in radiation triage and biodosimetry, focusing chiefly on: i) the importance of baseline frequency and reported values among different laboratories, ii) the influence of known and unknown variables on dose estimation, iii) quality assurance such as inter-laboratory comparison between scorers and scoring methods, and iv) current limitations and potential for future development.


Subject(s)
Histones/metabolism , Triage/methods , Biodiversity , Dose-Response Relationship, Radiation , Histones/genetics , Humans , Micronucleus Tests/methods , Radiation, Ionizing , Radiometry
10.
Environ Sci Pollut Res Int ; 28(30): 41207-41223, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33782825

ABSTRACT

This study demonstrates a simple protocol for phytofabrication of titanium dioxide nanoparticles (TiO2NPs) wrapped with bioactive molecules from Ludwigia octovalvis leaf extract and their characterization by UV-visible absorption spectroscopy, Fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectrum (XPS), and diffuse reflectance spectrum (DRS). The bandgap energy of pure green engineered TiO2 nanoparticles was determined by DRS analysis. The XPS analysis confirmed the purity of the TiO2 nanoparticles. Results show that the synthesized TiO2NPs were spherical in shape with the size ranged from 36 to 81 nm. The green engineered titanium oxide nanocatalyst exhibited enhanced rate of photocatalytic degradation of important textile toxic dyes namely crystal violet (93.1%), followed by methylene blue (90.6%), methyl orange (76.7%), and alizarin red (72.4%) after 6-h exposure under sunlight irradiation. Besides, this study determines the antimicrobial efficiency of TiO2NPs (25 µl and 50 µl), leaf extract (25 µl), and antibiotic (25 µl) against clinically isolated human pathogenic bacterial strains namely Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus epidermidis, and Escherichia coli. Results show that maximum antibacterial activity with nanotitania treatment noticed was 21.6 and 18.3-mm inhibition in case of S. epidermis and P. aeruginosa, respectively. Enhanced rate of antibiofilm activity towards S. aureus and K. pneumoniae was also observed with TiO2NPs exposure. The biomolecule loaded TiO2NPs exhibited the fastest bacterial deactivation dynamics towards gram-negative bacteria (E. coli), with a complete bacterial inactivation within 105-min exposure. Interestingly, anticancer activity result indicates that percentage of human cervical carcinoma cell (HeLa) viability was negatively correlated with TiO2NPs doses used. The AO/EtBr fluorescent staining result exhibited the occurrence of more apoptosis (dead cells) of HeLa cells due to the exposure of TiO2NPs. Altogether, the present study clearly showed that biomolecules wrapped nanotitania could be used as effective and promising compound for enhanced photocatalytic and biomedical applications in the future.


Subject(s)
Metal Nanoparticles , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Escherichia coli , HeLa Cells , Humans , Spectroscopy, Fourier Transform Infrared , Titanium , X-Ray Diffraction
11.
Article in English | MEDLINE | ID: mdl-32928370

ABSTRACT

Radiation has widespread applications in medicine. However, despite the benefits of medical radiation exposures, adverse long-term health effects are cause for concern. Protein and gene biomarkers are early indicators of cellular response after low-dose exposure. We examined DNA damage by quantifying γ-H2AX foci and expression of twelve candidate genes in the blood lymphocytes of patients exposed to low doses of X-radiation during neuro-interventional procedures. Entrance surface dose (ESD; 10.92-1062.55 mGy) was measured by thermoluminescence dosimetry (TLD). Absorbed dose was estimated using γ-H2AX focus frequency and gene expression, with in vitro dose-response curves generated for the same biomarkers. γ-H2AX foci in post-exposure samples were significantly higher than in pre-exposure samples. Among the genes analysed, FDXR, ATM, BCL2, MDM2, TNFSF9, and PCNA showed increased expression; CDKN1A, DDB2, SESN1, BAX, and TNFRSF10B showed unchanged or decreased expression. Absorbed dose, estimated based on γ-H2AX focus frequency and gene expression changes, did not show any correlation with measured ESD. Patients undergoing interventional procedures receive considerable radiation doses, resulting in DNA damage and altered gene expression. Medical procedures should be carried out using the lowest radiation doses possible without compromising treatment.


Subject(s)
Histones/radiation effects , Lymphocytes/radiation effects , Magnetic Resonance Imaging, Interventional/adverse effects , Radiation Exposure/adverse effects , DNA Damage/radiation effects , Dose-Response Relationship, Radiation , Female , Gene Expression Regulation/radiation effects , Histones/blood , Humans , Male , Middle Aged , Patients , Radiation Dosage , X-Rays/adverse effects
12.
Article in English | MEDLINE | ID: mdl-31326035

ABSTRACT

Interventional radiology-based imaging is the preferred choice for diagnosis and therapy of many complex diseases, despite possible adverse effects of the radiation exposures. We have measured induced DNA damage and changes in gene expression in relation to entrance surface dose (ESD) in peripheral blood samples of patients (n = 51) who underwent neuro-interventional radiological procedures. The ESD values, measured by thermoluminescence dosimetry, were 4.9-273 mGy (forehead), 14-398 mGy (eyes), 8-433.3 mGy (shoulders), and 4.7-242.5 mGy (thyroid). The in-built recorded Dose Area Product (DAP) values were 74.61-558.55 and 13.17-2825.12 Gy*cm2 for diagnostic and therapeutic procedures, respectively. The mean fluorescence intensity (MFI) on the phosphorylation of γ-H2AX and p53ser-15 was higher in samples obtained post-exposure vs. pre-exposure. However, the increase was statistically significant only for p53ser-15 (P < 0.01). Consistent with γ-H2AX, CDKN1A, FDXR, BAX, DDB2, SESN1, BCL2, MDM2, TNFSF10B, and PCNA showed (non-significant) decreased expression while GADD45A, ATM, and TNFSF9 showed (non-significant) increased expression. Our results suggest that most of the patients had increased DNA damage and altered gene expression after receiving relatively low doses of ionising radiation. This implies that these procedures should be carried out at the lowest possible doses of radiation that do not compromise image quality.


Subject(s)
DNA Damage , Gene Expression/radiation effects , Radiography, Interventional/adverse effects , 4-1BB Ligand/biosynthesis , 4-1BB Ligand/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Ataxia Telangiectasia Mutated Proteins/biosynthesis , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Dose-Response Relationship, Radiation , Female , Histones/genetics , Humans , Male , Middle Aged , Radiation Dosage , Radiation Exposure , Real-Time Polymerase Chain Reaction , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics , Young Adult
13.
Article in English | MEDLINE | ID: mdl-30678829

ABSTRACT

Positron Emission Tomography/Computed Tomography (PET/CT), a combination of PET and CT, is used in tumor staging, therapy planning, and treatment response monitoring. During PET imaging, patients receive low doses of radiation, which can induce an adaptive response and necessitate higher doses for therapeutic efficacy. Higher doses may augment toxicity to normal cells. We are examining the effects of short-term, low-dose exposures to ionizing radiation. Entrance Surface Dose (ESD) to head, shoulders, and pelvis regions were measured using Li2B4O7: Mn thermoluminescent dosimeters. Induced DNA damage in lymphocytes was measured using γ-H2AX, p53Ser-15, chromosome aberrations, and micronucleus formation in subjects (n = 25) who underwent 18F-FDG PET/CT. The mean ESD ± SD value obtained were 32.40 ± 16.86, 32.58 ± 14.22, 32.02 ± 15.42, 43.55 ± 18.25 and 42.80 ± 24.67 mGy for the head, right shoulder, left shoulder, right pelvic, and left pelvic regions, respectively. The effective doses of PET and CT ranged from 4.01 to 6.61 and 16.40-72.18 mSv, respectively, and the obtained Dose Length Product (DLP) varied from 1093 to 4812 mGy*cm. There was no correlation between DLP and ESD (r2 = 0.1). The chromosome aberration assay showed a significant increase (p < 0.05), post-scanning vs. pre-scanning; the γ-H2AX, p53Ser-15, and micronucleus assays did not show significant increases. Induced DNA damage showed inter-individual variation among the study subjects. Our results imply that the patients received a biologically significant dose during 18F-PET/CT scanning and precautions may be needed to reduce any long-term risk of exposure.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Damage/radiation effects , Fluorodeoxyglucose F18/adverse effects , Lymphocytes/radiation effects , Positron Emission Tomography Computed Tomography/adverse effects , Radiation Dosage , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Micronucleus Tests , Middle Aged , Radiation, Ionizing
14.
J Cell Biochem ; 120(4): 5722-5728, 2019 04.
Article in English | MEDLINE | ID: mdl-30320915

ABSTRACT

In vitro human lymphocyte culture methodology is well established yet certain confounding factors such as age, medical history as well as individual's blood type may potentially modulate in vitro proliferation response. These factors have to be carefully evaluated to release reliable test report in routine cytogenetic evaluation for various genetic conditions, radiation biodosimetry, etc. With this objective, the current study was focused on analyzing the proliferation response of lymphocytes drawn from 90 individuals (21-29 years) with different blood types. The proliferation response was assessed in the cultured lymphocytes by cell cycle, mitotic index (MI), and nuclear division index (NDI) after stimulation with phytohaemagglutinin (PHA). To investigate the toxic effect on proliferation, MI was calculated in representative samples of each blood type were X-irradiated. The results showed that there was no significant difference among the cell cycle phases of lymphocytes in different blood types (P > 0.05). Similarly, both MI and NDI of lymphocytes derived from different blood types also did not show significant difference ( P > 0.05). The extensive interindividual variation within and among the blood types is likely responsible for the lack of significant difference in lymphocyte proliferation. Although spontaneous proliferation efficiency of lymphocytes of different blood types after PHA stimulation was grossly similar, the MI observed after radiation exposure showed a significant difference ( P < 0.05) indicating a differential proliferation response among the blood types. Our results suggest that the blood types did not have any impact on PHA-induced proliferation; however, a specific differential lymphocyte proliferation observed after radiation exposure needs to be considered.


Subject(s)
Blood Group Antigens/classification , Blood Group Antigens/metabolism , Cell Nucleus Division , Cell Proliferation , Lymphocyte Activation/drug effects , Lymphocytes/cytology , Mitosis , Adult , Cell Cycle , Cells, Cultured , Female , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Phytohemagglutinins/pharmacology , Young Adult
15.
J Photochem Photobiol B ; 178: 496-504, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29241121

ABSTRACT

Textile industries release tonnes of harmful toxic dyes into the environment, causing severe effects on living organisms, including humans. Mosquitoes vectors spread important diseases which cause millions of human deaths worldwide. To control mosquitoes a number of synthetic mosquitocidal agents have been employed but all these pesticides pose harmful effects to human health and non-target species and also led to resistance development in treated vectors. Microbial strains are also developing resistance to the available antibiotics, this currently represents a major public health challenge. The current study is focused on the green synthesis of titanium dioxide nanoparticles (TiO2 NPs) using aqueous leaf extracts of Euphorbia hirta. Results suggested an efficient remedy for the above mentioned problems using TiO2 NPs against the dye degradation, mosquito larvae and bacterial pathogens. The fabrication of TiO2 NPs was confirmed by UV-visible spectroscopy, the biomolecules involved in the synthesis process were evidenced by Fourier transform infra-red spectroscopy (FT-IR), the crystalline structure was observed by using X-ray powder diffraction (XRD) analysis. Spherical shaped TiO2NPs were recorded using field emission scanning electron microscopy (FESEM). Energy dispersive X-ray spectroscopy (EDX) results showed the elemental composition of TiO2 NPs. Enhanced rate of photocatalytic dye degradation efficacy was recorded in in methylene blue (95.8%) followed by crystal violet (86.7%). Antibacterial activity assays indicated growth inhibition was highest in Staphylococcus epidermidis and Proteus vulgaris. The LC50 of TiO2 NPs and E. hirta extract on Aedes aegypti larvae were 13.2mg/l and 81.2mg/l, while on Culex quinquefasciatus they were 6.89mg/l and 46.1mg/l respectively. Overall, based on the results of the present study, the green engineered nanotitania could be considered as novel and promising photocatalytic, antibacterial, and mosquitocidal agent.


Subject(s)
Anti-Infective Agents/chemistry , Coloring Agents/chemistry , Metal Nanoparticles/chemistry , Titanium/chemistry , Aedes/drug effects , Aedes/growth & development , Animals , Anti-Infective Agents/pharmacology , Azo Compounds/chemistry , Catalysis , Escherichia coli/drug effects , Euphorbia/chemistry , Euphorbia/metabolism , Green Chemistry Technology , Larva/drug effects , Light , Metal Nanoparticles/toxicity , Methylene Blue/chemistry , Photolysis/drug effects , Photolysis/radiation effects , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
16.
Environ Sci Pollut Res Int ; 25(11): 10328-10339, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28537028

ABSTRACT

Titanium dioxide nanoparticles are emerging as a biocompatible nanomaterial with multipurpose bioactivities. In this study, titanium dioxide (TiO2) nanoparticles were effectively synthesized using the aqueous leaf extracts of Parthenium hysterophorus prepared by microwave irradiation. TiO2 nanoparticles were fabricated by treating the P. hysterophorus leaf extracts with the TiO4 solution. Biologically active compounds such as alcohols, phenols, alkanes, and fluoroalkanes were involved in bioreduction of TiO4 into TiO2. The formation of green-engineered TiO2 nanoparticles was confirmed by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) spectroscopy and further characterized by X-ray diffraction (XRD) studies. UV-vis spectroscopy analysis showed maximum absorbance at 420 nm due to surface plasmon resonance of synthesized TiO2 NPs. FTIR spectrum of the engineered TiO2 NPs showed the presence of bioactive compounds in the leaf extract, which acted as capping and reducing agents. FESEM exhibited an average size of 20-50 nm and a spherical shape of TiO2 NPs. EDX analysis indicated the presence of TiO2 NPs by observing the peaks of titanium ions. XRD results pointed out the crystalline nature of engineered TiO2 NPs. The larvicidal activity of TiO2 NPs was studied on fourth instar larvae of dengue, Zika virus, and filariasis mosquito vectors Aedes aegypti and Culex quinquefasciatus. Antimicrobial efficacy of TiO2 NPs was assessed on clinically isolated pathogens Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, and Staphylococcus epidermidis. Besides, we found that TiO2 NPs are able to quickly degrade the industrially harmful pigments methylene blue, methyl orange, crystal violet, and alizarin red dyes under sunlight illumination. Overall, this novel, simple, and eco-friendly approach can be of interest for the control of vector-borne diseases, as well as to formulate new bactericidal agents and to efficiently degrade dye solutions in the polluted areas.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Azo Compounds/chemistry , Insecticides/chemistry , Larva/drug effects , Plant Extracts/chemistry , Silver/chemistry , Titanium/chemistry , Aedes , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Asteraceae , Culex , Mosquito Vectors , Parthenogenesis , X-Ray Diffraction
17.
Appl Radiat Isot ; 131: 1-7, 2018 01.
Article in English | MEDLINE | ID: mdl-29080427

ABSTRACT

The γ-H2AX assay was investigated as an alternative to the time-consuming dicentric chromosome assay (DCA). Radiation doses to 25 radiotherapy patients were estimated in parallel by DCA and the γ-H2AX assay. The γ-H2AX assay yielded doses in line with the calculated equivalent whole body doses in 92% of the patients, whereas the success rate of DCA was only 76%. The result shows that the γ-H2AX assay can be effectively used as a rapid and more precise alternative to DCA.


Subject(s)
Chromosome Aberrations , Histones/genetics , Radiometry/methods , Radiotherapy Dosage , Adult , Aged , Case-Control Studies , Female , Histones/blood , Humans , Male , Middle Aged , Neoplasms/radiotherapy , Reproducibility of Results , Whole-Body Irradiation , Young Adult
18.
Biomed Res Int ; 2017: 1856713, 2017.
Article in English | MEDLINE | ID: mdl-28626752

ABSTRACT

This study was carried out to determine the chemoprotective potential of a polyherbal aqueous decoction comprised of Nigella sativa (seeds), Hemidesmus indicus (roots), and Smilax glabra (rhizome) against bleomycin induced cytogenetic damage in human lymphocytes. Isolated peripheral blood lymphocytes (PBLs) were exposed to bleomycin at a dose of 40 µg/mL for 2 hrs in the presence or absence of different doses of the decoction (100, 300, and 600 µg/mL). Modulatory effect of the decoction on bleomycin induced cytogenetic damage was evaluated by (a) degree of chromosomal aberrations (CA), (b) formation of micronuclei (MN), and (c) induction of γH2AX foci in lymphocytes exposed to bleomycin. Lymphocytes pretreated with the decoction showed that a significant reduction (p < 0.05) in bleomycin induced (a) stable and unstable chromosome aberrations (CA), (b) MN formation, and (c) formation of γH2AX foci, when compared to lymphocytes treated only with bleomycin. The decoction by itself did not induce any significant cytogenetic damage in PBLs. Overall results of the present study confirm that the decoction can attenuate the cytogenetic damage mediated by bleomycin in human PBLs.


Subject(s)
Bleomycin/adverse effects , Chromosome Aberrations/chemically induced , Hemidesmus/chemistry , Lymphocytes/metabolism , Nigella sativa/chemistry , Plant Extracts/pharmacology , Rhizome/chemistry , Seeds/chemistry , Smilax/chemistry , Bleomycin/pharmacology , Humans , Lymphocytes/pathology , Plant Extracts/chemistry
19.
Article in English | MEDLINE | ID: mdl-28477876

ABSTRACT

The ionizing radiation received by patients and health workers due to radiological imaging may increase the risks of radiation effects, such as cancer and cataracts. We have investigated the dose received by specific areas around the head and related this to DNA damage in the blood lymphocytes of subjects exposed to interventional imaging. The entrance surface doses (ESD) to the forehead, neck, and shoulder were measured with a thermoluminescence dosimeter (CaSO4 disc or polycrystalline powder of lithium tetraborate doped with Mn) and compared with that of dose area product (DAP). DNA damage was measured by γ-H2AX, p53ser15, chromosomal aberration (CA), and micronucleus (MN) assays in lymphocytes of patients (n=75), before and 2 and 24h after exposure. The measured ESD values were 230.5±4.9, 189.5±3.55 and 90.7±3.4mGy for the forehead, neck, and shoulder, respectively. The DAP varied from 1.8 to 2047 Gy*cm2, showing a correlation with fluoroscopy time (r=0.417). Received doses did not increase early markers of DNA damage (γ-H2AX and p53ser15 assays), but residual damage (CA and MN frequencies) showed a significant (p<0.001) increase at 2 and 24h post-exposure compared to pre-imaging, despite poor correlation with DAP (r=0.1). Our results show that interventional imaging procedures deliver significant radiation doses and induce measurable DNA damage in lymphocytes of subjects, highlighting the need for rigorous patient safety protocols.


Subject(s)
DNA Damage , Lymphocytes/radiation effects , Radiography, Interventional/adverse effects , X-Ray Therapy/adverse effects , X-Rays/adverse effects , Adolescent , Adult , Aged , Comet Assay , Dose-Response Relationship, Radiation , Female , Histones/genetics , Humans , Lymphocytes/pathology , Male , Micronuclei, Chromosome-Defective/radiation effects , Micronucleus Tests , Middle Aged , Radiation Dosage , Tumor Suppressor Protein p53/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL